Leerjaar 2: Doelen en lessuggesties voor leerroute A Vak: Rekenen/wiskunde Getallen, Verhoudingen, Meten en meetkunde, Verbanden Getallen GETALLEN: Onderdeel 1 Optellen Doelen leerjaar 2 1. Positioneert getallen tot 10.000 globaal op een getallenlijn met alleen duizendtallen 2. Benoemt grote getallen als miljoen en miljard 3. Spreekt gehele getallen tot 100.000 correct uit 4. Schrijft gehele getallen tot 100.000 correct en aftrekken (inclusief getalgevoeligheid, inzicht in getalstructuur) Lesideeën Opmerking: oefeningen uit deze kolom betreffen soms suggesties om bestaande kennis te onderhouden (zie ook leerjaar 1). Activiteiten zijn geschikt als oefening/opstart aan het begin van een les; het verdient aanbeveling om de kern van de les over hetzelfde onderwerp te laten gaan. 1.1.5 (oefenen/onderhouden) Som van de dag: 456+237/879-352, hoe kun je die uitrekenen? Wat is er moeilijk aan deze sommen? Link met vergelijkbare som onder de 100. 1.1.5 (oefenen/onderhouden) Som van de dag: 478+286: hoe zou je die kunnen uitrekenen? Wat is er moeilijk aan? Leerlingen die het kunnen de som laten uitrekenen. De andere leerlingen alleen laten uitleggen hoe het zou kunnen, en vervolgens de rekenmachine laten gebruiken. 1.2.1 Getallenlijn met duizendtallen: vul gezamenlijk in wat er bij de streepjes moet staan. Noem een getal en vraag bij welk van de ‘streepjesgetallen’ het in de buurt ligt. Uitleg vragen. Eventueel stukje telrij opzeggen. 1.2.1 Getallenlijn met duizendtallen van 0 tot 10000 op het bord. Waar ligt ongeveer 4500? En 7500? Daarna inzoomen: 4350 (ligt tussen 4000 en 5000, dichterbij 4000 dan bij 5000, iets voor de helft van 4000 en 5000). Waar ligt ongeveer 6300? En 7589? 2345? Hoe weet je dat? Redeneringen als: een eindje voorbij de helft; 1.2.2 Aantal hits op een website: zoek een website en kijk naar de bezoekersaantallen. Vaak staat er een grafiekje bij afgebeeld: veel VOx is ontwikkeld in opdracht van OCW door KPC Groep, SLO en CED-Groep 1 Bronnen/opmerkingen Springen op de getallenlijn: http://www.fi.uu.nl/toepassingen/00 111/toepassing_rekenweb.html Bezoekersaantallen op websites http://www.fi.uu.nl/rekenweb/stats/stati stieken.xml weinig bezoekers? (zie ook 10.2.3) Youtube: sommige filmpjes hebben binnen een dag meer dan een miljoen hits. Is dat veel? (aandachtspunten: filmpjes zijn wereldwijd te zien, relateren aan wereldbevolking; wordt filmpje waarschijnlijk alleen in eigen land bekeken?) 1.2.2/1.2.3 Bezoekersaantallen: van bioscoop, museum, tentoonstelling, pretparken, etc. Opzoeken, uitspreken, noteren. 1.2.2 Kijkcijfers tijdens een voetbalwedstrijd (bij voorkeur WK of EK). Hebben er precies zoveel mensen naar de wedstrijd gekeken? 1.2.2/1.2.3 Aantal inwoners van het dorp of de stad waarin je woont; opzoeken in atlas of op internet. Hoe spreek je dat getal uit? Is het een grote plaats? Wanneer spreek je van een miljoenenstad? 1.2.2 Miljoenensteden: zoek er een paar op in de atlas of op internet. Voorstelling van maken (bv 3 keer zoveel inwoners als in Utrecht; xx keer zo groot als het dorp/de stad waar je woont). Waar vinden we de meeste miljoenensteden? Megasteden (meer dan 10 miljoen mensen). 1.2.2 Miljardairs: een miljard als 1000 x 1000 x 1000; 1.2.2 Wereldbevolking: verdeling over de werelddelen; waar wonen de meeste mensen? Opzoeken in atlas/internet. Betekenis van genoemde getallen: precieze getallen of niet? 1.2.3 Getallen > 100.000 benoemen. 1.2.4 Getallendictee: getallen tot 100.000 noteren; GETALLEN: Onderdeel 2 Vermenigvuldigen en delen Doelen leerjaar 2 Lesideeën 1. Vertaalt een contextsituatie Opmerking: oefeningen uit deze kolom betreffen soms suggesties om naar een deelsom (bv 24 bestaande kennis te onderhouden (zie ook leerjaar 1). koeken in pakjes van 6 Activiteiten zijn geschikt als oefening/opstart aan het begin van een les; (groepjesmodel); 24 snoepjes het verdient aanbeveling om de kern van de les over hetzelfde onderwerp verdelen over 6 personen te laten gaan. (eerlijk verdelen): 24:6 2. Maakt gebruik van de 2.1.3 Som van de dag: 7x12. Hoe reken je die uit? Bv via omkeren en splitsaanpak en de nulregel vervolgens de tafel van 7 op zeggen. Maar wat als je die niet kent? bij tafelsommen als 6x24 10x7 en 2x7. Laten zien via rechthoekmodel. (6x24= 6x20 en 6x4; 2.2.1 Herkennen van deelgetallen of tafelgetallen: noem een getal en 6x2=12, dus 6x20=120)1 laat de leerlingen een tafel noemen waar het getal in thuishoort. 3. Maakt een schatting van de Neem ook getallen die bij meerdere tafels horen (bv 12, 24, 60). 1 Bronnen/opmerkingen Tafelgetallen: welke getallen horen bij welke tafel? http://www.fi.uu.nl/toepassingen/00 202/toepassing_rekenweb.html Dit doel en de volgende alleen voor die leerlingen die de tafels beheersen. Andere leerlingen mogen deze sommen met RM uitrekenen. VOx is ontwikkeld in opdracht van OCW door KPC Groep, SLO en CED-Groep 2 uitkomst van een vermenigvuldiging (7x 81) Rollen er getallen uit, die bij heel veel tafels horen? Welke zijn dat dan? Deelbaarheid. 2.2.1 Delen als verdelen en als inverse van vermenigvuldigen: je hebt een hoeveelheid dezelfde voorwerpen en verdeelt die over x personen. Hoeveel krijgt ieder? Eerst doen, daarna: had je dat nou ook kunnen weten zonder het te doen? Neem een voorbeeld dat uitkomt, bv 24 koekjes uit een pak verdelen over 4 personen. Hoeveel krijgt ieder? 24 zit in de tafel van 4: 6x4=24, dus ieder krijgt 6 koeken. 2.2.1/2.2.2 Actualiteit benutten bv voetbalplaatjes bij de supermarkt, in pakjes van 5. Je hebt 7, 12, 15 pakjes gespaard: hoeveel plaatjes? Herhaald optellen, verdubbelen, beginnen bij 10 pakjes, en van daaraf verder tellen, etc. Daarna omgekeerd: je hebt met vrienden afgesproken, dat verzamelde plaatjes verdeeld zullen worden met z’n drieën. Op een dag zijn er 45 plaatjes verzameld: hoeveel krijgt ieder? 2.2.3 Doet een beroep op de distributieve eigenschap (verdelen): 7x81=(7x80)+(7x1). Dit eerst inzichtelijk maken met lagere getallen, bv 8x7 weet ik niet, maar 7x7 wel; hoe kan ik dat gebruiken om achter het antwoord op 8x7 te komen? Laten zien met rechthoekmodel of groepjes (7 rijtjes van 7 tegels, 8 rijtjes van 7 tegels; 7 zakjes met 7 koeken, 7 zakjes met 8 koekjes). Duidelijk maken dat er 1x7 bij komt en niet 1. Dit herhalen met andere opgaven die binnen bereik leerlingen liggen. 2.2.3 Zie vorige punt, maar nu met grotere getallen. Weer illustreren met een voorbeeld. Ga ook eens naar een opgave als 7x79: makkelijk op te lossen via (7x80)-(7x1). Let hier weer op leerlingen die er 1 aftrekken in plaats van 7. GETALLEN: Onderdeel 3 Schattend rekenen Doelen leerjaar 2 Lesideeën 1. Maakt gebruik van schattend 3.1.1 Globaal bepalen hoeveel er van iets is (herhaling/onderhoud, rekenen als de situatie zich heeft ook verband met 1.2.2); beetje ‘gekke’ voorbeelden, zoals daartoe leent (ook met aantallen korrels in een pak hagelslag of rijst, grassprietjes op een kommagetallen): voetbalveld, tegels op een plein. Strategie bedenken om dit handig €2,95+€3,98+€4,10, Heb ik aan te pakken, bv niet 1 voor 1, maar een handjevol tellen, genoeg aan 10 euro? vervolgens kijken hoeveel ‘handjes’ je kunt maken. 3.1.1 (onderhoud) Hoeveel mensen op een vierkante meter? Mieren op een mierenhoop; Olifanten op een vierkante kilometer (foto’s nemen). Hoeveel … 3.2.1 Voorbeelden van berekeningen: kunnen die kloppen? Bv iemand VOx is ontwikkeld in opdracht van OCW door KPC Groep, SLO en CED-Groep 3 Bronnen/opmerkingen heeft een opgave met de rekenmachine uitgerekend, maar de komma vergeten te zetten, of vergeten in te toetsen. Antwoord kan dan niet kloppen. Idee wat het wel moet zijn? 3.2.1 Winkelsituatie: in de lunchpauze gaan veel leerlingen naar de buurtsuper. Je hebt een tientje bij je en koopt iets voor €2,95, voor €3,98 en €4,10. Heb je genoeg? Deze situatie regelmatig aan de orde stellen. 3.2.1 Vuurwerk kopen: voor de viering van Oud en Nieuw mag je vuurwerk kopen van je ouders. Je hebt 50 euro ter beschikking. Wat ga je kopen? Opzoeken in folders/internet. GETALLEN: Onderdeel 4 Rekenmachine2 Doelen leerjaar 2 Lesideeën 1. Destilleert bewerking uit 4.1.1 Verschillende knoppen op de rekenmachine: 3,05 vs 3,50. context en lost deze met Intoetsen; 0 bij 3,50 valt weg. Hoe kan dat? Waarom valt die andere behulp van een rekenmachine nul niet weg? Komma in kommagetal wordt punt op RM. Verschil met op; controleert de uitkomst bv een groot getal als 1.235, waar de punt niet de functie van een door een schatting komma heeft. 2. Laat zien hoe de 4.1.3 Bij-, of vakantiebaantjes. Bij AH-to go verdien je als je 16 jaar breukentoets werkt bent € 3,50 per uur. Hoeveel per dag? Andere vakantiebaantjes. Oefenen met de rekenmachine: Hoe kan ik van 7315 eenvoudig 7015 maken met de RM? Idem voor andere getallen (positiewaarde). Hoe kan ik van 65+65+65+65+65+65+65 zo snel mogelijk op RM uitrekenen? (maak er 7x65 van) Hoe maak ik van 70 het getal 700? En van 73 het getal 730? Van 835 het getal 8350? (steeds x10). Zelfde met x100. Idem voor andere bewerkingen. 4.2.1 Fiets in de fietsenstalling: kaartje kost € 1,20 per dag. Je stalt je fiets drie keer in de week in de fietsenstalling. Hoeveel kost dat per week? Een maandkaart kost € 12,-. Kun je beter een maandkaart kopen of losse kaartjes? 4.2.1 Je hebt een bijbaantje en verdient daarmee xxx per uur. Je Bronnen/opmerkingen Advies: Kies voor een RM uit de TI30 serie, twee regelig, tenminste met de breukentoets erop en de %toets. Geen wetenschappelijke RM. Promotie, rekenmachine, H4. Speciaal Rekenen, Katern Rekenmachine, incl software. RM mag gebruikt worden als rekenhulp, bij ingewikkeld rekenwerk. Zorg dus voor koppeling van deze leerlijn aan de andere leerlijnen uit het onderdeel Getallen. Voor de leerroute ‘hoog’ geldt, dat de leerling moeten kunnen analyseren hoe hij een opgave zou kunnen oplossen, maar het rekenwerk desgewenst aan de RM overlaat. Omdat het hier om de hoge leerroute gaat, worden er toch behoorlijk eisen in de andere leerlijnen gesteld (bv wel 6x24 kunnen analyseren cq uitrekenen via splitsaanpak, maar niet 64x23) 2 VOx is ontwikkeld in opdracht van OCW door KPC Groep, SLO en CED-Groep 4 werkt 2 uur per dag, 6 dagen in de week. Hoeveel verdien je dan per maand? Besteed speciaal aandacht aan het wegvallen van de 0 in het scherm, als het antwoord op 0 eindigt (bv 2,50 wordt 2,5; zie punt 1 uit deze kolom) 4.2.1 Je doet mee aan een sponsorloop (bv Kikarun): 1 euro per km, of meer/minder. Je loopt 5 kilometer. Schema geven met inzet van verschillende mensen die sponsoren. Hoeveel heb je opgehaald? Aantal gelopen kilometers vermenigvuldigen met inzet. 4.2.2 VOx is ontwikkeld in opdracht van OCW door KPC Groep, SLO en CED-Groep 5 Vak: Rekenen en wiskunde Verhoudingen VERHOUDINGEN: Onderdeel 5 Doelen leerjaar 2 1. Benoemt begrippen als driekwart en anderhalf. 2. Bepaalt (met behulp van de strook als model) een deel van een hoeveelheid (1/4 van 120 euro vv: 20 van de 100 euro is 1/5) 3. Redeneert vanuit een context over verhoudingen en noteert dit systematisch (verhoudingstabel) 4. Vergelijkt eenvoudige verhoudingen 1 op de 3 kinderen gaat met vakantie naar het buitenland; meer of minder dan de helft? 5. Benoemt het % teken; 100 %, 50 %, 25%, 10 %, 1 % (Eenvoudige) breuken, procenten, kommagetallen en verhoudingen Lesideeën 5.2.1 Neem flessen cola of ander frisdrank en laat de leerlingen benoemen hoeveel cola er in de fles zit. Op fles staat 1,5 l, benoem dit als ‘anderhalve liter’. Hoeveel gewone literflessen kun je hiermee vullen? Ga vervolgens naar de betekenis van anderhalf: 1 en een half. Laat ze andere voorbeelden noemen van anderhalf en bespreek de betekenis daarvan: bv 1 ½ uur, 1 ½ a-4tje volgeschreven, 1 ½ brood, … 5.2.1 Begin weer bij anderhalf (1 ½) en laat de leerlingen enkele voorbeelden noemen en verklaren. Ga vervolgens naar driekwart: wat zou dat betekenen? Kennen we voorbeelden van drie kwart? (drie kwartier). Ga in op een voorbeeld en laat verklaren of leg uit dat het hier om drie keer een kwart (of drie kwarten) gaat. Drie kwartier betekent dus: drie keer een kwartier, drie kwart liter betekent drie keer een kwart liter, etc. Schrijf driekwart ook op als ¾ . Laat aan de hand van een concretisering daarvan zien, dat het gaat om drie stukken van een kwart, of drie keer een kwart. 5.2.2 Neem een reep chocola van 12 stukjes. (Hoe) kunnen we dat eerlijk verdelen met z'n vieren? Hoeveel stukjes krijgt ieder? Manieren: iedere leerling steeds een stukje geven, tot de reep op is. Ieder heeft dan 3 stukjes. Had je dat ook meteen kunnen weten? 12 stukjes, 4 leerlingen: 12:4=3, dus drie stukjes per leerling. Besteed vervolgens speciaal aandacht aan de breukentaal: delen door 4, kun je ook beschrijven als ¼ deel van. Hoeveel is dan ¼ deel van 12? En ¼ deel van 8? Van 20? Kunnen we zelf nog andere voorbeelden verzinnen, bij ¼ deel van …? Laat de voorbeelden steeds illustreren met een strook (bij wijze van reep): een strook van … (8, 20, 40, ..) stukjes verdelen met 4 leerlingen. Vaak herhalen met andere voorwerpen, die te verdelen zijn (bv plank in centimeters, grotere repen). Ook andere verdelingen maken (bv in drieën, in vijven, in tienen). Zie ook: applet eerlijk verdelen, rekenweb ter oefening. 5.2.2 Neem een zakje paaseitjes van verschillende soorten. Laat eerst VOx is ontwikkeld in opdracht van OCW door KPC Groep, SLO en CED-Groep 6 Bronnen/opmerkingen Bij breuken altijd de horizontale streep nemen; lukt niet op mijn computer. Buijs, K. & P. van der Zwaard (2007). 'Prototype van een aangepast leertraject groep 7/8'. Te downloaden via www.slo.nl, PO, Themas: rekenen-wiskunde po, Prototype van een aangepast leertraject rekenen-wiskunde groep 7/8. Talteam (2005). Breuken, procenten, kommagetallen en verhoudingen. Tussendoelen Annex Leerlijnen Bovenbouw Basisschool. Groningen: Wolters Noordhoff. Speciaal Rekenen (2009): Breek je hoofd niet over Breuken Eerlijk verdelen: http://www.fi.uu.nl/toepassingen/03 021/toepassing_rekenweb.html schatten hoeveel eitjes er in de zak zitten. Zullen er evenveel van elke soort in zitten? Laat de soorten bij elkaar leggen en tellen: er zitten bv 36 eitjes in, waarvan 12 witte chocola, 12 melk en 12 pure chocola (wit, blauw en rood). Laat de leerlingen beschrijven wat er op tafel ligt: 36 eitjes, drie groepjes, in ieder groepje 12 eitjes. Besteed nu aandacht aan de taal: 36 eitjes in drie groepen verdeeld, 12 eitjes per groep, dus 1/3 van 36 = 12. Herhalen met andere aantallen en andere voorwerpen. 5.2.3 Situaties: bv 4 grapefruits kosten €2, hoeveel kosten 10 grapefruits; Uitzoeken met een verhoudingstabel (overzichtelijk noteren): aantal grapefruits 4 prijs in euro’s 2 2 1 1 10 0,50 5 Andere situaties op soortgelijke wijze oplossen. Focus op wat handige getallen zijn om in te vullen. 5.2.5 Blad met voorbeelden van procenten (bv 10% extra pindakaas, 25% korting, 100% katoen, 50% korting, etc.). Leerlingen zelf laten verzamelen/noemen/zoeken, of voorbeelden geven. Uitspreken van procentteken als 'procent'. Benoemen als 'van de honderd'. Dus: 50% betekent 50 van de honderd. Hoe kun je dat anders noemen? (de helft). 100% is 100 van de 100, dus alles. Verklaar zo nog een paar veel voorkomende percentages. VOx is ontwikkeld in opdracht van OCW door KPC Groep, SLO en CED-Groep 7 Vak: Rekenen en wiskunde Meten en Meetkunde METEN en MEETKUNDE: Onderdeel 6 Ruimtelijke oriëntatie en ruimtelijk redeneren Doelen leerjaar 2 Lesideeën 1. "Leest" plattegrond of kaart 6.2.1 Opfrissen: plattegrond is de wereld van boven. Kort door de van een bepaalde streek, bocht is het een luchtfoto, waar een tekening van is gemaakt. provincie, eiland en past 6.2.1 Google earth: opzoeken van de eigen woonplaats en vervolgens daarbij schaalaanduidingen in het gebiedje waar je zit. Herkenningspunten laten opzoeken, woorden toe (1 centimeter is aanwijzen. Kaart van het geselecteerde gebied opvragen. Foto en in werkelijkheid 1 kilometer) plattegrond naast elkaar: verschillen en overeenkomsten. Weg wijzen of gebruikt een schaallijntje (intekenen) van school naar … Volgende keer: herhaling met ander 2. Benoemt windrichtingen stuk. 3. Benoemt begrippen als 6.2.1 Neem een boekje van een NS-wandelroute (verkrijgbaar via straal, diameter, en de balie, of via www.eropuit.nl; zie ook bronnen voor een voorbeeld). Zo samenhang daartussen mogelijk afbeelden op digibord. 4. Kan plaatsbepalen mbv Bekijk het kaartje en de route: van waar naar waar? Vaak is er een coördinaten (bv in rooster met hokjes van 2 x 2 cm over het kaartje getekend. In het stratenboek; plaats in de boekje staat ‘elk vierkantje is 1 bij 1 km’. bioscoop) Laat globaal uitzoeken hoe lang de ingetekende route is. Heeft raakvlakken met leerlijn 10 (picto’s lezen, legenda). 6.2.1 Kopie van een wandel- of fietskaart: laat de leerlingen een route bedenken en intekenen. Hoe ver is het ongeveer? Als er een rooster is getekend (zoals bij vorige punt): dit opfrissen. Als er geen rooster is getekend, staat er vaak een schaallijntje bij: Hoe kun je dat lijntje gebruiken om uit te zoeken hoe lang de route ongeveer is? 6.2.2 Doe een uitspraak als: hij komt uit het ‘Hoge Noorden’ of ‘het Verre Oosten’. Wat bedoelen we dan? In Nld worden die uitdrukkingen ook licht plagerig gebruikt, en bedoelen we Friesland, Groningen, Noorden van Noord-Holland, resp. Overijssel, Drenthe, Gelderland. Laat naar aanleiding hiervan Noorden en Oosten op een kaart aanwijzen. Weten we ook hoe de andere richtingen heten? Benoemen als Zuiden en Westen. Neem vervolgens een afbeelding van een kompasroos en wijs noorden VOx is ontwikkeld in opdracht van OCW door KPC Groep, SLO en CED-Groep 8 Bronnen/opmerkingen PrOmotie, meten 1, H2: Naar de bioscoop PrOmotie, meten 3, H2: kamer inrichten. Officiële schaalaanduiding (bv 1:100) is lastig en vergt veel uitleg en zorgvuldige opbouw. Leren vertalen naar bv 1 cm is in werkelijkheid 100 cm (of 1 m). Helicoptervlucht: plattegrond/schaal/windrichtingen. http://www.fi.uu.nl/toepassingen/03 112/toepassing_rekenweb.html: Voorbeeld van een ns wandelroute http://www.eropuit.nl/pdf/hollandseb iesbosch-kaart.pdf Voorbeeld van fietsrouteplanner http://www.fietsersbond.net/fietsrout eplanner/fietsroutesrecreatieveplanner/ Plaatje kompasroos, te gebruiken bij windrichtingen. en oosten aan. Ook de andere windrichtingen staan er op. Doe enkele oefeningen met de kompasroos. Richtingen komen meestal niet precies uit, maar zitten er ergens tussenin. Bedenk samen met de leerlingen de namen van de andere windrichtingen: tussen N(oord) en O(ost) zit N(oord)N(oord)O(oost). Laat invullen: NNO. Etc. 6.2.2 Verschillende oefeningen met windrichtingen, bv ahv kaartje bij het weerbericht: staat een pijltje bij, bij wijze van windrichting: hoe zou je die noemen? 6.2.1/6.2.2 http://www.fi.uu.nl/toepassingen/03112/toepassing_rekenweb.html: helikoptervlucht. Je mag een vluchtje met de helikopter maken, van 200 km. Maak een vliegplan. 6.2.3 Cirkels in het zand (op het strand): foto helmgrassprietje dat door de wind een cirkel in het zand maakt. Helmsprietje: straal. Straal is aan alle kanten van de cirkel hetzelfde. Recht doortrekken sprietje: diameter. 6.2.3 Een hek gaat open en dicht, een deur open en dicht door de sneeuw (plaatjes laten zien). Deur, hek is de straal. Twee keer de deur/het hek is de diameter. Een geit aan een touw: afstand pin in de grond tot looppad geit is straal, twee keer die afstand is diameter. Als zodanig in verschillende situaties laten aanwijzen, benoemen. VOx is ontwikkeld in opdracht van OCW door KPC Groep, SLO en CED-Groep 9 6.2.3 Schematische tekening van voorgaande (helmsprietje, hek, deur, touw). Opnieuw straal en diameter laten aanwijzen. Aandacht voor diameter is twee keer de straal Eventueel: stel dat we met afkortingen (letters) willen werken. In wiskunde wordt straal aangeduid met r, en diameter met d. Letters bij de tekening laten noteren. Kunnen we nu in letters opschrijven wat de diameter is? (d=2xr of 2r=d). Laat hierbij steeds aanwijzen op de tekening. 6.2.4 Naar de bioscoop (PrOmotie, meten 1, H2): plaats bepalen, waar zit je? Wie zit waar? 6.2.4 Stratenboek, of stadsplan van een grotere stad. Straat opzoeken in register. Daarachter staat een code, om aan te duiden waar je moet zijn: pagina nummer, gevolgd door coördinaten, bv F, 3 d. Laat uitleggen hoe dit werkt; als leerlingen dat niet weten zelf uitleggen. Daarna diverse straten laten opzoeken. METEN en MEETKUNDE: Onderdeel 7 Meten van lengte, inhoud, gewicht, omtrek en oppervlakte, temperatuur Doelen leerjaar 2 Lesideeën Bronnen/opmerkingen 1. Benoemt de samenhang Lengte PrOmotie, katernen ‘meten 1, 2 en 3’ tussen gangbare maten: 7.2.1 de bordliniaal, de geodriehoek, de rolmaat, en de centimeter op en ‘wegen’ tussen km en m, tussen m en tafel. Benoemen van de meetinstrumenten. Daarna PrOmotie, katern ‘aflezen’. dm, cm, mm, tussen l en dl, bestuderen/opfrissen: de bordliniaal is precies 1 meter, ingedeeld in meten van lengte wordt vooral bij cl, ml en tussen kg, g en mg. centimeters, maar met aan de bovenkant de decimeters vermeld. techniek gebruikt; afstemming op 2. Bepaalt omtrek van een Conclusie: 1dm=10cm en 1m=100cm school gewenst: hoe wordt het voorwerp (niet alleen Vergelijken met de rolmaat. Ingedeeld in centimeters en millimeters, aangeleerd en hoe wordt het rechthoekig) geen decimeters. Lengte kan variëren van 3 tot 10 meter. toegepast in de keuken? 3. Legt uit dat bv een vierkante Op de geodriehoek (of de gewone liniaal) staan centimeters, maar ook Id voor wegen, afstemmen met meter niet vierkant hoeft te millimeters. Conclusie: 1cm=10mm. koken in de keuken zijn Noteer deze uitkomsten overzichtelijk op het bord. Wat doen we met de begrippen bruto 4. Gebruikt binnen context het 7.2.1/7.2.2 kledingmaten: s, m, l, xl vs 36, 38, 40, 42, etc (meisjes) gewicht, netto gewicht en tarra? begrip vierkante m, dm, cm en 46, 48, 50, 52 etc. (jongens). Welke maten komen ongeveer Tbv Oppervlakte: vloertjes leggen. (m2, dm2, cm2) als maat overeen? Plaatsen van maten in een interval, opzoeken in een tabel http://www.fi.uu.nl/toepassingen/03 voor oppervlakte (zie ook volgende punt). 252/toepassing_rekenweb.html, 5. Berekent bv hoeveel verf 7.2.2 Tabel met lichaamsmaten: heupwijdte, taillewijdte, omtrek of Kunstvloer nodig is om een muur te bovenbenen, etc. Wat bedoelen ze dan? Eigen omtrek opmeten en http://www.fi.uu.nl/toepassingen/03 verven (op de bus staat koppelen aan maten: bv 98 cm heupwijdte = maat 40. (wel 020/toepassing_rekenweb.html hoeveel vierkante meter je voorzichtig mee zijn op deze leeftijd) ermee kunt verven), de muur 7.2.2 touw, meetlinten, bij de hand. Verschillende voorwerpen: wat is is bv 2,5 bij 5 m de omtrek? Wat bedoelen we dan? Met touwtje de omtrek van bv een beschuitbus opnemen. Lengte van touwtje is de omtrek van de bus. VOx is ontwikkeld in opdracht van OCW door KPC Groep, SLO en CED-Groep 10 Als je het preciezer wilt weten, hoe kan dat? Met meetlint; rolmaat, duimstok, liniaal zijn niet zo handig in dit geval. Laat van verschillende voorwerpen de omtrek opmeten, met touwtje of met centimeter. Uitkomst noteren in hele centimeters. 7.2.2 Foto via Google Earth, van de bovenkant van een vijver. Laat de leerlingen de omtrek van de vijver aanwijzen: de rand. Verband met omtrek van voorwerpen leggen. Kunnen we ook het wateroppervlak aanwijzen? Afdruk maken van de foto, liefst gestileerd: omtrek tekenen, oppervlakte arceren. Van verschillende voorbeelden (bv bovenkant van een gebouw, weiland, akkerland), omtrek resp. oppervlakte laten tekenen/arceren. Oppervlakte 7.2.3 Voorbeelden laten noemen van voorwerpen met een oppervlak van 1 vierkante meter (bv zijkant van het bord, uitgevouwen krant, verschillende A4tjes aan elkaar, etc). Hoeveel vierkante meter is het hele schoolbord? Laten bedekken met kranten. Idem met andere voorwerpen. Oppervlakte uitdrukken in m2. 7.2.4 7.2.5 deuren verven, bv deur in klaslokaal. Op pot staat dat er genoeg verf in zit voor 8 m2. Wat betekent dat? Hoeveel deuren kun je hier (ongeveer) mee verven? Eventueel weer krant als intermediair gebruiken. 7.2.5 Hoeveel potten verf moet je kopen voor een plafond van 4 m breed en 5 m lang? Maak hier een schematische tekening van, bv met vierkantjes. 7.2.5 METEN en MEETKUNDE: Onderdeel 8 Meten van tijd (klokkijken en kalender) Doelen leerjaar 2 Lesideeën 1. Berekent tijd in contexten 8.2.1 herhaling: Globale planning maken om een maaltijd te bereiden: globaal (zoals het is 's avonds spullen pakken, aardappels schillen/rijst afwegen, water koken, vijf voor half 9, als de trein voedingsmiddelen koken, etc dat duurt bij elkaar ongeveer …. min. Als vertrekt om 20:47, hoeveel ik de maaltijd om 18.00 wil opdienen, moet ik dus ongeveer om …. tijd heb je dan nog?: ruim 20 beginnen. Een maaltijd maken voor meerdere personen kost meer minuten) tijd, dan voor twee personen. 2. Maakt een globale inschatting 8.2.1 Met de trein: je gaat naar een sportevenement met de trein. De hoe lang een te maken reis wedstrijd begint om 14.30 (hoe laat is dat ook al weer?). Je hebt een ongeveer gaat duren reistijd nodig van 1 ½ uur. Hoe laat moet je dan vertrekken? VOx is ontwikkeld in opdracht van OCW door KPC Groep, SLO en CED-Groep 11 Bronnen/opmerkingen Reis met auto plannen via www.routenet.nl Reis met trein plannen via www.ns.nl of www.9292ov.nl Kalender (applet) http://www.fi.uu.nl/toepassingen/0 1028/toepassing_rekenweb.html 3. Zoekt data op kalender op en zoekt met behulp van kalender uit hoeveel dagen, weken, maanden iets nog duurt Link leggen met analoge klok. De klok staat op 13.56 uur, moet je al bijna weg, of kun je nog rustig aan doen? 8.2.1 Met de trein 2: route plannen via ns routeplanner of via 9292ov. Routeplanner geeft aan dat de trein vertrekt om 19.58 uur. De klok staat op half 8. Je moet ook nog een stukje met de fiets. Ga je de trein halen? Moet je opschieten, of valt dat wel mee? 8.2.2 Met de auto naar familie in Zeeland. Waar wonen jullie? Aantal kilometers tot ongeveer? Hoe lang rijd je daar ongeveer over? Nachecken op www.routenet.nl 8.2.3 zakagenda: zoek vandaag op. Daarna de eerstvolgende vakantie. Hoe lang duurt het nog voor het vakantie is? Bijzondere feestdagen laten noemen, op bord noteren. Welke data zijn het? Zijn het vaste data, of niet (sommige wel, sommige niet). Opzoeken in agenda. Hoe lang duurt het nog, of (als datum net geweest is) hoe lang is het geleden dat het Kerst (…) was? Je gaat ongeveer 1 keer in de 8 weken naar de kapper. Is het al weer bijna tijd, of heb je nog even? Halfjaarlijks tandarts bezoek. 8.2.3 zie vorige punt, maar dan met een digitale agenda. Verkennen pijltjes, invoeren van een afspraak. Kan ook op mobieltje. Hiervoor kan ook de applet ‘Kalender’ gebruikt worden (zie bronnen). 8.2.3 Vakantie plannen: je wilt met drie vrienden/vriendinnen op tienertour. Periode opzoeken die voor iedereen goed uitkomt. Waar willen jullie graag naartoe? Overnachten bij/in jeugdherbergen. Op tijd reserveren, anders is er geen plaats meer. Hoe lang duurt het nog voor het zo ver is? METEN en MEETKUNDE: Onderdeel 9 Geldrekenen Doelen leerjaar 2 Lesideeën 1. Leest een prijskaartje als € Treinreis: heen en terug van Utrecht naar Arnhem. Heen voor 9 uur ’s 1,25 ; € 25,50 ; € 0,95 en ochtends. Terug rond 6 uur ’s avonds. Welk(e) kaartje(s) kun je het betaalt zo’n bedrag beste kopen? Uitzoeken via internet, www.ns.nl 2. Noteert een bedrag als 9.2.1 Inrichten van je kamer: wat wil je hebben/heb je nodig? decimaal getal Hoeveel kost dat ongeveer? Opzoeken op internet, in folders. 3. Maakt een weekoverzicht van Overwegingen meenemen: wat vind je mooi, waar is het het inkomsten en uitgaven goedkoopst. Uiteindelijk kiezen waar je koopt. 9.2.1 Uit eten: met z’n vieren uit eten. De rekening komt: eerst bepalen of en zo ja hoeveel fooi je geeft. Daarna betalen. Hoeveel betaalt ieder? Rondje in de kantine na voetbal, of in disco: hoeveel te betalen? Wat VOx is ontwikkeld in opdracht van OCW door KPC Groep, SLO en CED-Groep 12 Bronnen/opmerkingen www.ns.nl http://www.nibud.nl/omgaan-metgeld/kinderen-en-geld/zakgeld-enbelgeld.html Op jezelf, RENN4, 2008. moet je geven? (bv 25,50: briefje van 20, van 5 en 50 euromuntstuk). Samenstellen van bedragen. 9.2.3 Zakgeld voor jongeren (zie www.nibud.nl; bronnen). Opzoeken in tabel wat jongeren van jouw leeftijd aan zakgeld krijgen. Geldt dit ook voor jou? Misschien heb je ook nog een bijbaantje; hoeveel verdien je daarmee? In weekend wil je uitgaan of winkelen. Laat leerlingen noteren wat ze in een week zoal uitgeven en waaraan. Maak een schatting van het bedrag dat je kwijt bent. Heb je genoeg inkomsten om quitte te spelen? 9.2.x Met de fiets of met de bus naar school. Leerling klaagt dat het zo’n eind fietsen is van huis naar school. Het is wel … km! Houdt voor een keer bij hoe ver het fietsen is met de fietscomputer. Noteer het aantal kilometers in een kommagetal (zie fietscomputers). Is het echt zo ver, of viel het mee? Hoeveel geld zou je kwijt zijn als je dezelfde afstand met de bus zou doen? VOx is ontwikkeld in opdracht van OCW door KPC Groep, SLO en CED-Groep 13 Vak: Rekenen en wiskunde Verbanden VERBANDEN Onderdeel 10 Informatieverwerking, grafieken en tabellen Doelen leerjaar 2 Lesideeën 1. Leest een dienstregeling 10.2.1 Met de Keukenhof Expres Pendelbus: loopt vanaf Leiden, Den Haag als vorm van een of Schiphol, alleen in de periode half maart – half mei. veelvoorkomende tabel Afbeelding van rooster op (laten) zoeken op internet en projecteren op 2. Beschrijft digibord. Wat kun je allemaal aan de pagina zien? (periode waarin de bus regelmatigheden in een rijdt, drie bussen, reistijd van station naar Keukenhof (ca 25 minuten), tabel in woorden bus rijdt ieder kwartier, exacte vertrektijden bus, eerste en laatste bus, 3. Leest en interpreteert etc.). eenvoudige grafieken 10.2.1 Afbeelding van bustijden. Hoe vaak gaat de bus, tussen 7 en 8 uur 4. Beschrijft verloop van ’s morgens? En tussen 15.00 en 16.00 uur ’s middags? Waar ligt dat aan? een grafiek: stijgen, Zomerregeling. dalen, minimum, 10.2.1 Treintijden (zie ook 8): je hebt een route gepland en wilt voor de maximum zekerheid een trein eerder nemen. Waar staat dat in de tabel? 5. Kan gehele getallen 10.2.2 Tafelkaart als veelvoorkomende tabel laten lezen. plaatsen in een Neem een andere tabel en leg die aan de leerlingen voor (bv tabel waarin assenstelsel steeds is verdubbeld) en vraag wat er is gebeurd. Tabel kan zo uitgebreid zijn als je wilt. Ook kunnen leerlingen bv een regel toevoegen en door andere leerlingen laten uitzoeken wat de bewerking is geweest. 10.2.3 Grafiek lezen: aantal hits op een website per maand in een grafiek weergegeven. Wanneer de meeste hits? Opvallende zaken? ‘Schoolsites’ (als bv rekenweb) pieken tijdens schooluren, maar ook ’s avonds na etenstijd. (Zie ook 1.2.2) 10.2.3 Grafiekenmaker (zie onder bronnen): hoe jongeren groeien, snelle groei in de eerste jaren, verschil in groei tussen vier jongeren. Kies in eerste instantie voor de groei van Tesja en vergelijk de tabel met de grafiek. Door klikken op het pijltje in het onderste schermpje zie je de staaf steeds een stukje hoger worden: de groei. 10.2.4 Temperatuurgrafiek: leg de leerlingen een grafiek voor met de temperaturen van dit jaar (ingedeeld in maanden). Laat ze vervolgens beschrijven wat ze zien: boven 0, onder 0, wanneer hoogste/laagste temperatuur? Benoem de hoogste temperatuur als ‘maximum’ en laagste als ‘minimum’. 10.2.4 Grafiekjes van consultatiebureau: gewicht stijgt eerst, daalt dan VOx is ontwikkeld in opdracht van OCW door KPC Groep, SLO en CED-Groep 14 Bronnen/opmerkingen Promotie, Aflezen. http://www.connexxion.nl/bus/19/ke ukenhof_lijnen/422/ www.ns.nl Grafiekenmaker http://www.fi.uu.nl/toepassingen/03 313/tesja.html licht, en stijgt vervolgens weer. Laat laagste gewicht aanwijzen en benoemen als minimum. 10.2.4 Jaar van de Egel (2009). In grafiek staat weergegeven hoe de stand van de egel afneemt in de loop van de jaren. Boven de grafiek staat dat de egelstand ongeveer met de helft is afgenomen tov halverwege de jaren 90. Bekijk de grafiek en laat de leerlingen beschrijven in termen van stijgen en dalen, maximum aantal (meeste) en minimum (minste) aantal egels. Leerlingen die het kunnen, kunnen ook kijken of de bewering boven de grafiek kan kloppen. VOx is ontwikkeld in opdracht van OCW door KPC Groep, SLO en CED-Groep 15