Deeltjes en velden HOVO Cursus Jo van den Brand 3 oktober 2013 [email protected] Overzicht • Docent informatie • Jo van den Brand & Gideon Koekoek • Email: [email protected] en [email protected] • 0620 539 484 / 020 592 2000 • Rooster informatie • Donderdag 10:00 – 13:00, HG 08A-05 (totaal 10 keer) • Collegevrije week: 24 oktober 2013 • Boek en website • David Griffiths, Introduction to Elementary Particles, Wiley and Sons, ISBN 978-3-527-40601-2 (2008) • Zie website URL: www.nikhef.nl/~jo • Beoordeling • Huiswerkopgaven 20%, tentamen 80% Inhoud • Inleiding • Deeltjes • Interacties • Relativistische kinematica • Speciale relativiteitstheorie • Viervectoren • Energie en impuls • Quantumfysica • Formalisme • Spin van deeltjes • Structuur van hadronen • Symmetrieën • Behoudwetten, quarkmodel • Symmetriebreking • Veldentheorie • Lagrange formalisme • Feynman regels • Quantumelektrodynamica • Diracvergelijking • Quarks en hadronen • Quantumchromodynamica • Elektrozwakke wisselwerking • Higgs formalisme Relatieve beweging Einstein 1905: Alle natuurwetten blijven dezelfde (zijn invariant) voor alle waarnemers die eenparig rechtlijnig t.o.v. elkaar bewegen. De lichtsnelheid is invariant – heeft voor alle waarnemers dezelfde waarde. Einstein 1921 Inertiaalsysteem: objecten bewegen in rechte lijnen als er geen krachten op werken (Newton’s eerste wet). Indien een systeem met constante snelheid t.o.v. een inertiaalsysteem beweegt, dan is het zelf ook een inertiaalsyteem. Schrijf de wetten van de natuurkunde in een covariante vorm: als relaties tussen objecten die niet van het (willekeurig gekozen) coördinatensystem afhangen 4 Differentiaaltopologie Ruimte: verzameling met structuur 3D Euclidische ruimte 4D ruimtetijd in SRT met globaal een Minkowski structuur Temperatuur als scalarveld Topologische objecten in een ruimte Scalarveld Vectorveld In het algemeen: tensorveld Tensoren: geometrische grootheden, los staand van eventuele referentiesystemen Relativiteitsprincipe: de natuurwetten zijn onafhankelijk van de keuze van het referentiesysteem Door gebruik te maken van tensoren kan een referentiesysteem onafhankelijke beschrijving verkregen worden Ruimtetijd heeft additionele structuur: metrische tensor, waardoor we inproduct kunnen definiëren Oppervlaktewind als vectorveld Euclidische ruimte • Vlakke ruimte met afstand tussen punten als invariant 2 1 2 • Vectoren A A e1 A e2 A e A e B B e 1 Basisvector Vectorcomponent Sommatieconventie Einstein Evenzo in 3 (of meer) dimensies • Inproduct A B A e B e A e e B A g B A B • Kies basis ex , ey i , j Metrische tensor • Voorbeeld: A 2,3 en B 1, 4 1 0 1 1 A B A B g 2,3 2,3 2 1 3 4 14 0 1 4 4 B g B Euclidische ruimte • Vlakke ruimte met afstand tussen punten als invariant • Pythagoras ds 2 dx 2 dy 2 ds 2 dx dx g dx dx dx dx dx dx dx 2 ds dy 1 0 dx dx (dx, dy ) dx 2 dy 2 0 1 dy dy ex ex i j 1 P ds T dy Evenzo in 3 dimensies 2 Contravariante vectorcomponenten a 3 Covariante componenten a ( 2,3) T O dx Ook geldt dr 1 0 dr dr 2 2 2 ds (dr , d ) 2 dr r d 2 d 0 r d r d 2 Metrische tensor Minkowskiruimte • Licht gedraagt zich onafhankelijk van de waarnemer • Golffronten zijn behouden voor bewegende waarnemers • Beschouw bolgolven vanuit de oorsprong O: dx 2 dy 2 dz 2 c 2 dt 2 0 O': dx2 dy2 dz 2 c 2 dt 2 0 ds 2 dx dx g dx dx dx dx cdt 2 ds dr P ds O cdt T 2 1 0 cdt cdt 2 2 (cdt , dr ) c dt dr 0 1 dr dr We hebben nu ruimtetijd en weer een invariant (een scalar). dr Trouwens, elke a b is een scalar en dus invariant! e0 e0 1 Minkowskiruimte 1 0 0 0 0 1 0 0 • Metrische tensor g 0 0 1 0 0 0 0 1 • Beschrijft de vlakke (hyperbolische) ruimte van de speciale relativiteitstheorie Beschouw 2D hyperbolische ruimte, cdt en dx Stel we hebben contravariantevectorcomponenten Wat zijn dan de covariante componenten Wat is de lengte van a? Kan positief, nul of negatief zijn! a ? 2 a 3 a (2,3) 2 a a a 2 2 3 3 5 Metriek heeft signatuur 2: een pseudoriemannse variëteit Minkowskiruimte ct • Ruimtetijd geometrie C C’ (s) 2 (ct ) 2 x 2 B’ Welke zijde van driehoek ABC is het langst? Welk de kortste? Wat zijn de lengten? A B A’ |AB| = 5, |BC| = 3, |AC| = wortel(-32 + 52) = 4 Wat is het kortste pad tussen punten A en C? De rechte lijn tussen A en C, of het pad ABC? Rechte pad AC is kortste pad tussen A en C Idem voor driehoek A’B’C’ |A’B’| = |B’C’| = wortel(-32+32) = 0 en |A’C’| = 6 Pad is A’B’C’ met lengte 0. x (s) 2 (ct ) 2 x 2 0 x c t Tweelingparadox (s)2 (ct )2 x 2 (c )2 Minkowski meetkunde Basisvectoren e met 0,1, 2,3 We hebben gevonden dat als 0 1 (e , e ) 1 als i 0 overige gevallen Nieuw symbool Minkowskimetriek (e , e ) Inverse Het invariante lijnelement Notatie bevat metriek en coordinaten Voor cartesische coordinaten Lijnelement uitschrijven Dezelfde tijd: Ruimtelijke termen: Stelling van Pythagoras Dezelfde plaats: het lijnelement is een maat voor de tijd verstreken tussen twee gebeurtenissen voor een waarnemer die in rust is ten opzichte van deze gebeurtenissen Dan geldt Tijddilatatie Het invariante lijnelement Waarnemer W1: twee gebeurtenissen op dezelfde plaats Waarnemer W2: meet tijdverschil We vinden met lorentzfactor Snelheid tussen waarnemers Tijddilatatie is geometrisch effect in 4D ruimtetijd Tijd tussen twee gebeurtenissen verstrijkt het snelst voor een waarnemer die in rust is ten opzichte van deze gebeurtenissen: eigentijd Translaties en rotaties Minkowski meetkunde: het invariante lijnelement Welke transformaties laten dit element invariant? Translaties Rotaties, bijvoorbeeld Dit is een rotatie rond de z-as (met t en z constant, terwijl x en y mengen) Schrijf Invullen levert We vinden Rotatie rond de z-as Evenzo voor rotaties rond de x- en y-as p/2 Lorentztransformaties Welke transformaties laten dit element invariant? Boost, bijvoorbeeld Dit is een boost langs de x-as (met y en z constant, terwijl t en x mengen) Schrijf Invullen levert We vinden Boost langs de z-as Evenzo voor boosts langs de x- en y-as Wat is die hyperbolische hoek ? Rapiditeit We hadden Neem differentiaalvorm, kies Kwadrateren, delen door en vergelijken met tijddilatatie Dat is een kwadratische vergelijking in Manipuleer Gebruik de abc-formule Ook geldt en schrijf Lorentztransformaties Transformaties laten ds2 invariant Lorentz 1902 Waarnemers in S en S’ bewegen met snelheid v t.o.v. elkaar. Systemen vallen samen op t = t’ = 0. Waarnemer in S kent (x, y, z, t) toe aan het event. Waarnemer in S’ kent (x’,y ’, z’, t’) toe aan hetzelfde event. Wat is het verband tussen de ruimtetijd coordinaten voor dit zelfde event? Lorentztransformaties Lorentztransformatie Inverse transformatie (snelheid v verandert van teken) Relativiteit van gelijktijdigheid Stel dat in systeem S twee events, A en B, op dezelfde tijd, tA = tB, gebeuren, maar op verschillende plaatsen, xA xB. Invullen levert Events vinden niet simultaan plaats in systeem S’ Lorentzcontractie (lengtekrimp) Stel dat in systeem S' een staaf ligt, in rust, langs de x' as. Een einde op x' = 0, het andere op x' = L'. Wat is de lengte L gemeten in S? We moeten dan de posities van de uiteinden meten op dezelfde tijd, zeg op t = 0. Het linker einde bevindt zich dan op x = 0. Het rechter einde op positie x = L' / . Langs bewegingsrichting! Een bewegend object wordt korter met een factor in vergelijking tot zijn lengte in rust. Tijddilatatie (tijdrek) Een bewegende klok loopt langzamer met een factor in vergelijking tot toestand in rust. Deeltjes hebben `ingebouwde’ klokken (verval). Optellen van snelheden u ' x Een raket is in rust in inertiaalsysteem S' dat met snelheid v beweegt t.o.v. S. Iemand vuurt een kogel af in systeem S' met snelheid ux' in S'. Wat is de snelheid van de kogel in S ? Een kwestie van afgeleiden nemen … Als ux' = c, dan u = c en lichtsnelheid gelijk voor alle systemen!!! Het klassieke antwoord Viervectoren Positie-tijd viervector x, met = 0, 1, 2, 3 Lorentztransformaties July 23, 2017 Jo van den Brand 22 Viervectoren Lorentztransformaties In matrixvorm algemeen geldig July 23, 2017 met Jo van den Brand 23 Lorentzinvariantie Ruimtetijd coordinaten zijn systeem afhankelijk Invariantie voor Net als r2 voor rotaties in R3 Analoog zoeken we een uitdrukking als Hiervoor schrijven we de invariant I als een dubbelsom Met metrische tensor July 23, 2017 Plaats van minteken is kwestie van afspraak Jo van den Brand 24 Co- en contravariante vectoren Contravariante viervector Covariante viervector Invariant Dit is de uitdrukking die we zochten. De metriek is nu ingebouwd in de notatie! Deze notatie wordt ook gebruikt voor niet-cartesische systemen en gekromde ruimten (Algemene Relativiteitstheorie) Viervectoren Viervector a (contravariant) transformeert als x We associeren hiermee een covariante viervector Ruimte componenten krijgen een minteken Ook geldt Invariant Scalar product Er geldt July 23, 2017 Jo van den Brand 26 Snelheid Snelheid van een deeltje t.o.v. het LAB: afstand gedeeld door tijd (beide gemeten in het LAB) Proper snelheid: afstand in LAB gedeeld door eigentijd (gemeten met klok van het deeltje) Een hybride grootheid. Er geldt viersnelheid Er geldt July 23, 2017 Jo van den Brand 27 Impuls en energie Klassieke impuls p = mv Definieer relativistische impuls als Ruimtelijke componenten Tijdachtige component Definieer relatv. energie Energie-impuls viervector Indien behouden in S dan niet in S' Energie Taylor expansie levert Rustenergie van deeltje Klassieke kinetische energie Merk op dat enkel veranderingen in energie relevant zijn in de klassieke mechanica! Relativistische kinetische energie Massaloze deeltjes (snelheid altijd c) July 23, 2017 Jo van den Brand 29 Botsingen Energie en impuls: behouden grootheden! Massa is Lorentzinvariant July 23, 2017 Merk op dat E en p niet (Lorentz) invariant zijn! Massa m is geen behouden grootheid! Jo van den Brand 30 Voorbeeld 1 Massa’s klonteren samen tot 1 object begintoestand eindtoestand Energiebehoud Impulsbehoud Er geldt Na botsing is object in rust! Energiebehoud levert Na botsing hebben we een object met massa M = 5m/2. Massa is toegenomen: kinetische energie is omgezet in rustenergie en de massa neemt toe. Voorbeeld 2 Deeltje vervalt in 2 gelijke delen begintoestand eindtoestand Energiebehoud (zie vorige opgave) Heeft enkel betekenis als M > 2m Men noemt M = 2m de drempelenergie voor het verval. Voor stabiele deeltjes is de bindingsenergie negatief. Bindingsenergie maakt net als alle andere interne energieën deel uit van de rustmassa. July 23, 2017 Jo van den Brand 32 Voorbeeld 3 Verval van een negatief pion (in rust): p- + - Vraag: snelheid van het muon Relatie tussen energie en impuls Dit levert Massa van neutrino is verwaarloosbaar! Energiebehoud July 23, 2017 Jo van den Brand 33 Voorbeeld 3 – vervolg Gebruik Relatie tussen energie, impuls en snelheid Snelheid van het muon Invullen van de massa’s levert v = 0.271c Voorbeeld 3 – viervectoren Energie en impulsbehoud Kwadrateren levert Merk op dat en We vinden E Evenzo Er geldt Hiermee hebben we weer E en p gevonden en weten we de snelheid. Minkowskiruimte: causale structuur tijdachtig: ds2 negatief lichtachtig: ds2 = 0 toekomst ruimteachtig: ds2 positief P verleden Binnen de lichtkegel kunnen gebeurtenissen causaal verbonden zijn met gebeurtenis P. Er buiten kan geen causaal verband bestaan. Minkowskiruimte • Bewegende waarnemers s 2 c 2 t 2 x 2 v ct ' (ct x) c x' ( x vt) Voor de x’ as: stel ct’=0. Dan volgt ct = x. Voor de schaal op de x’ as: stel x’=1 en ct’=0. Dan volgt x=. Voor de ct’ as: stel x’=0. Dan volgt ct = x/. Voor de schaal op de ct’ as: stel ct’=1 en x’=0. Dan volgt ct=. Ruimtetijd van de ART Het belang van fotonen m.b.t. structuur van ruimte tijd: empirisch vastgestelde universaliteit van de voortplanting in vacuum Onafhankelijk van bewegingstoestand van de bron golflengte intensiteit polarisatie van EM golven ct deeltje in rust deeltje met willekeurige snelheid deeltje naar rechts bewegend met constante snelheid deeltje met lichtsnelheid 45o x Minkowskiruimte – dopplerfactor Waarnemers A en B hebben geijkte standaardklokken en lampjes = tijd tussen pulsen van lampje van A, ct gemeten met de klok van A waarnemer A ’= tijd tussen pulsen van lampje van A, waarnemer B gemeten met de klok van B ' k met dopplerfactor k ' k 45o x Minkowskiruimte – dopplerfactor Vanuit punt P bewegen waarnemers A en B ten opzichte van elkaar (constante snelheid v van B tov A) waarnemer A Lampje van A flitst na tijd gemeten met de klok van A (in E) R B ziet de flits van A na tijd k (in Q) waarnemer B B flitst zijn lampje in Q. Waarnemer A ziet dat in R, op tijd k 2 Afstand van Q tot A: (vluchttijd radarpuls x lichtsnelheid)/2 d ER c c (k 1) 2 2 M is gelijktijdig met Q als 2 EM RM EM M RM k 2 M 2 2 M k M M (k 1) k 2 M E 2 afstand d 1 v / c v k tijd M 1 v / c Q M P k waarnemer Minkowskiruimte – inproduct O 2 We kennen de vector PQ toe aan de geordende events P en Q Definitie: Q P ( PQ, PQ) c 1 2 2 1 Afspraak: tijden voor P negatief tijden na P positief E Dankzij het bestaan van een metriek (inproduct) kunnen we nu afstanden bepalen. Ruimtetijd heeft een metriek P 2 Q 2 0 1 P Q 1 Q 0 c 2 2 2 0 P P Q 1 0 2 Q P 1 0 P en Q gelijktijdig als 1 2 Lorentzinvariantie Minkowski-metriek Dat wil zeggen ( PQ, PQ) is onafhankelijk van de inertiele waarnemer door P Definitie: ( PQ, PQ) c 2 1 2 Met afspraak over het teken! Volgens A: ( PQ, PQ) c 1 2 Volgens B: ( PQ, PQ) c 1' 2' Er geldt Waarnemer A B2 2 2 PA k 1 PB 1 k 11' PA k PB 2 k 2' 1 2 Waarnemer B A2 2 2' 1 2 P 1 1 2 1' 2' 1' A1 Scalair product is Lorentzinvariant B1 Q Lorentzcoördinaten Definieer basisvector Er geldt e0 OE (e0 , e0 ) 1 2s E is verzameling puntgebeurtenissen die gelijktijdig zijn met O (t.o.v. A) Dat is de 3-dim euclidische ruimte op 0 t.o.v. A E is verzameling puntgebeurtenissen die gelijktijdig zijn met M Er geldt Q OE, OQ 0 (lA ) Er geldt (e1 , e1 ) 1 En ook (e0 , ei ) 0 en 1 s 0 s 1 s Orthonormaal stelsel vectoren in E met beginpunt O e , e , e 1 2 Waarnemer A (inertieel) 3 (ei , e j ) ij 2 s lA E e0 O e1 Lorentzcontractie Het invariante lijnelement Kies x-as als bewegingsrichting Er geldt O’ beweegt t.o.v. lat O staat stil t.o.v. lat Lat passeert waarnemer O’ (dus geldt en ) We vinden Waarnemer O beweegt met de lat mee: lengte lat is L Voor hem vinden de twee gebeurtenissen (passeren van begin en eind van de lat bij O’) op verschillende tijden, gescheiden door We hebben te maken met tijddilatatie Invullen levert