les06

advertisement
Gravitatie en kosmologie
FEW cursus
Jo van den Brand & Tjonnie Li
Kromlijnige coördinaten: 19 oktober 2010
Special relativity
 Consider speed of light as invariant in all reference frames
Coordinates of spacetime
Cartesian coordinates
denote as
superscripts
spacetime indices: greek
space indices: latin
 SR lives in special four dimensional manifold: Minkowski
spacetime (Minkowski space)
Coordinates are
Elements are events
Vectors are always fixed at an event; four vectors
 Metric on Minkowski space
Abstractly
as matrix
Inner product of two vectors (summation convention)
Spacetime interval
Often called `the metric’
Signature: +2
Proper time
Measured on travelling clock
Special relativity
 Spacetime diagram
Points are spacelike, timelike or nulllike
separated from the origin
Vector
with negative norm
is timelike
 Path through spacetime
Path is parameterized
Path is characterized by its tangent vector
as spacelike, timelike or null
For timelike paths: use proper time as parameter
Calculate as
Tangent vector
Four-velocity
Momentum four-vector
Normalized
Mass
Energy is time-component
Particle rest frame
Moving frame for particle with three-velocity
along x-axis
Small v
Traagheid van gasdruk
• SRT: hoe hoger de gasdruk, des te moeilijker is het om
het gas te versnellen (traagheid neemt toe)
• Oefen kracht F uit, versnel tot
snelheid v << c
Volume V
Dichtheid 
Druk P
1 2 1
mv  Vv 2
2
2
• SRT: lorentzcontractie maakt de
doos kleiner  
F  ds  PV
v
• Energie nodig om gas te
versnellen
1 2
1
1 v2
1
P 2
2
E  mv  PV  Vv 
PV




v V
2
2
2 c2
2
c2 
v2
1 v2
L  L 1  2  
L
2
c
2c
extra traagheid van gasdruk
Energie – impuls tensor: `stof’
1
P 2
• Energie nodig om gas te versnellen E     2 v V
2
c 
– Afhankelijk van referentiesysteem
– 0 – component van vierimpuls
• Beschouw `stof’ (engels: dust)
– Verzameling deeltjes in rust ten opzichte van elkaar
– Constant viersnelheidsveld U  (x) Flux viervector N   nU 
• Rustsysteem
– n en m zijn 0-componenten
van viervectoren
• Bewegend systeem
deeltjesdichtheid in rustsysteem
massadichtheid in rustsysteem   nm
2
energiedichtheid in rustsysteem c
– N0 is deeltjesdichtheid
– Ni deeltjesflux in xi – richting
c 2 is de   0,  0 component van de tensor p  N

Tstof
 p  N   mnU U   U U 
n
 
0
N  
0
 
0
 
 mc 
 
 0 
p   mU    
0
 
 0 
 
Er is geen gasdruk!
Energie – impuls tensor: perfecte vloeistof
• Perfecte vloeistof (in rustsysteem)
– Energiedichtheid 
– Isotrope druk P
T  diagonaal, met T 11  T 22  T 33
• In rustsysteem
• In tensorvorm (geldig in elke systeem)
We hadden
Probeer

Tstof
 U U 

Tstof
We vinden
P  

    2 U U
c 


Tstof
P  

    2 U U  Pg 
c 

Verder geldt
Tensors – coordinate invariant description of GR
• Linear space – a set L is called a linear space when
–
–
–
–
Addition of elements is defined
is element of L
Multiplication of elements with a real number is defined
L contains 0
General rules from algebra are valid
• Linear space L is n-dimensional when
–
–
–
–
–
Define vector basis
Notation:
Each element (vector) of L can be expressed as
or
Components are the real numbers
Linear independent: none of the
can be expressed this way
Notation: vector component: upper index; basis vectors lower index
• Change of basis
–
–
–
–
–
L has infinitely many bases
If
is basis in L, then
is also a basis in L. One has
Matrix G is inverse of
In other basis, components of vector change to
Vector
is geometric object and does not change!
and
i
contravariant
covariant
1-forms and dual spaces
• 1-form
–
–
–
–
GR works with geometric (basis-independent) objects
Vector is an example
Other example: real-valued function of vectors
Imagine this as a machine with a single slot to insert vectors: real numbers result
• Dual space
–
–
–
–
–
Imagine set of all 1-form in L
This set also obeys all rules for a linear space, dual space. Denote as L*
When L is n-dimensional, also L* is n-dimensional
For 1-form and vector
we have
Numbers
are components
of 1-form
• Basis in dual space
–
–
–
–
–
–
–
Given basis
in L, define 1-form basis
in L* (called dual basis) by
Can write 1-form as
, with
real numbers
We now have
Mathematically, looks like inner product of two vectors. However, in different spaces
Change of basis yields
and
(change covariant!)
Index notation by Schouten
Dual of dual space: L** = L
Tensors
• Tensors
–
–
–
–
–
–
–
So far, two geometric objects: vectors and 1-forms
Tensor: linear function of n vectors and m 1-forms (picture machine again)
Imagine (n,m) tensor T
Where
live in L and
in L*
Expand objects in corresponding spaces:
and
Insert into T yields
with tensor components
– In a new basis
– Mathematics to construct tensors from tensors: tensor product, contraction. This will
be discussed when needed
Kromlijnige coördinaten
Cartesische coördinaten
Punt in 2D euclidische ruimte: x en y
Kromlijnige coördinaten
Punt in 2D euclidische ruimte:  en 
Transformatie
Voor de afstand tussen 2 punten geldt
Transformatie moet één op één zijn
Voorbeeld: poolcoördinaten
Vectoren en 1-vormen
Vector
Transformeert net als verplaatsing
Er geldt
Systeem (x,y)
Systeem (,)
1-vorm
Beschouw scalairveld
Definieer 1-vorm
met componenten
Transformatiegedrag volgt uit kettingregel
We vinden (transformatie met inverse!)
Kromlijnige coördinaten
Afgeleide scalair veld
t
f(t2)
2
f(t1)
1
 U t   dt / dt 
 x 

 U   dx / dt 
U  y
dy / dt 
U
  

 U z   dz / dt 

  
raakvector (tangent vector)
De waarde van de afgeleide van f in de richting
Afgeleide van scalair veld
langs raakvector
Voorbeeld 1
Transformatie
Plaatsvector
Basisvectoren
Natuurlijke basis
Niet orthonormaal
Inverse transformatie
Duale basis
Metriek bekend
Voorbeeld 2
Voorbeeld 2
Tensorcalculus
Afgeleide van een vector
a is 0 - 3
stel b is 0
Notatie
Covariante afgeleide
met componenten
Voorbeeld: poolcoördinaten
Bereken
Bereken christoffelsymbolen
Divergentie en Laplace operatoren
Christoffelsymbolen en metriek
Covariante afgeleiden
In cartesische coördinaten en euclidische ruimte
Deze tensorvergelijking geldt in alle coördinaten
Neem covariante afgeleide van
Direct gevolg van
in cartesische coördinaten!
De componenten van dezelfde tensor
voor willekeurige coördinaten zijn
Opgave: bewijs dat geldt
Connectiecoëfficiënten bevatten
afgeleiden naar de metriek
Download