Een zwak oranje licht schijnt op een metaal maar er komen geen

advertisement
Schoolexamen 1 6 vwo NAE.
26-03-2007 Naam:
Straling, gassen, warmte, signaalverwerking. 90 minuten.
Gebruik BINAS en Grafische rekenmachine toegestaan.
Docent:
Voorlopige normering: Cijfer=(aantal punten) / 8+1
Opgave 1: 13p. Opgave 2: 10p. Opgave 3: 15p. Opgave 4: 10p. Opgave 5: 16p. Opgave 6: 8 p.
Opgave 1.
Polonium 210
Het element polonium werd in 1898 ontdekt door Marie Curie-Sklodowska en genoemd naar
haar vaderland Polen.
Het radioactieve isotoop Polonium-210 is in december 2006 in het nieuws gekomen omdat
de Russische ex-spion Litvinenko daarmee is vergiftigd.
a) Bepaal het aantal neutronen in Po-210
b) Geef de reactievergelijking van het verval van Po-210
c) Leg uit waarom de moordenaar zonder gevaar voor eigen leven het polonium heeft
kunnen vervoeren.
Polonium 210 is een uiterst gevaarlijke stof. Er wordt beweerd dat inname van één
microgram Po-210 ruim voldoende is om binnen 30 dagen een dodelijk dosisequivalent van
10 (Sv) te veroorzaken. Je gaat dit met een berekening controleren.
d) Bereken hoeveel atoomkernen 1,0 (μg) van het 210Po bevat.
e) Bereken hoeveel van die atoomkernen in 30 dagen vervallen
De energie die bij één vervalsreactie vrijkomt staat in BINAS. Eén (MeV) = 1,60.10-13 (J).
De weegfactor is voor alfastraling 20 en voor beta- en gammastraling 1. Neem aan dat alle
vrijgekomen energie in het lichaam van het slachtoffer (m = 75 (kg)) wordt geabsorbeerd.
Als je het antwoord op vraag e) niet hebt kunnen vinden, neem dan aan dat 3,0.1014 kernen
vervallen in 30 dagen.
f) Bereken het dosisequivalent na 30 dagen. Conclusie?
Men vermoedt dat Litvinenko met ongeveer 10 (μg) polonium is vergiftigd. Raadselachtig is
hoe de daders aan zo’n relatief grote hoeveelheid polonium zijn gekomen. Eén van de
manieren om 210Po te produceren is het beschieten van 209Bi kernen met neutronen. Dat kan
in een kernreactor, waar zeer intensieve neutronenstraling is. Als een 209Bi kern een neutron
invangt, ontstaat een 210Po kern en nog twee andere deeltjes.
g) Schrijf de reactie op en vermeld wat de andere deeltjes zijn.
Opgave 2.
Een duikfles
Duikers hebben op hun rug een duikfles met samengeperste lucht om onder water te kunnen
ademhalen.
In een volle fles zit 12,0 (L) lucht met een druk van 200 (bar) = 20,0 (MPa). De temperatuur
van de lucht is 20,0 (oC).
a) Laat zien dat de massa van één (mol) lucht 0,0288 (kg) is. Neem aan dat lucht voor 20%
uit zuurstof en voor 80% uit stikstof bestaat.
b) Bereken hoeveel (kg) lucht in de duikfles is.
c) Is de dichtheid van die lucht meer, minder, of even groot als die van zeewater? Licht het
antwoord toe met een berekening.
Een volwassen mens die boven water ademhaalt gebruikt per minuut 10 (L) lucht met een
druk van 1,0.105 (Pa) en een temperatuur van 20 (oC).
d) Bereken hoeveel (kg) lucht die persoon per minuut nodig heeft.
e) Bereken hoe lang die persoon - die met een volle duikfles begint - maximaal onder water
kan blijven.
1
Opgave 3.
Bad
Karin laat eerst 70 (L) water van 20 (oC) in het bad lopen. De warmtecapaciteit van de
badkuip is 6,0 (kJ/K). Daarna voegt zij 20 (L) water van 90 (oC) toe. Tijdens het toevoeren
van het hete water wordt 50 (kJ) warmte door de omgeving opgenomen.
Bereken de eindtemperatuur van het badwater.
Hint: noem de eindtemperatuur x en stel een vergelijking op waarin x de enige onbekende is.
Los de vergelijking op met behulp van de GR.
Schoolexamen Moderne Natuurkunde
Deel I: Meerkeuzevragen
Instructies: Kies het beste antwoord. Beantwoord elke vraag, ook als je niet zeker bent.
Ieder goed antwoord levert 1 punt op.
1.
De golf-deeltjes-dualiteit is in zekere zin opgelost met het begrip waarschijnlijkheid.
Zo kan niet voorspeld worden waar afzonderlijke fotonen terechtkomen, maar een
eigenschap van de golf hangt samen met de waarschijnlijkheid dat een foton op een
bepaalde plek terecht komt. Welke eigenschap van de golf wordt hier bedoeld?
A
B
C
D
2.
de amplitudo
de frequentie
de trillingstijd
de golflengte
Men wil met behulp van verstrooiing van elektronen aan een grafietkristal de atomaire
afstand tussen de koolstofatomen bepalen. Men meet de verstrooiingshoek voor het
maximum van de eerste orde. Welke gegevens van de elektronen zijn nodig om de
atomaire afstand te kunnen bepalen?
A
B
C
D
De massa en de snelheid.
Alleen de massa.
De massa en de lading.
De lading en de snelheid.
3.
We hebben een dubbele spleet en laten er in een paar seconden 20.000 elektronen door gaan
en zien op het scherm achter de spleet een interferentiepatroon.
Nu laten we er weer 20.000 elektronen doorgaan maar dit keer één voor één in een periode
van 24 uur en we maken de impuls van de elektronen 2 zo groot. Wat zien we op het
scherm?
A.
puntjes in een willekeurig patroon, net alsof we kogeltjes door de dubbele spleet
hadden geschoten.
B.
een interferentiepatroon net als eerst.
C.
een interferentiepatroon met de maxima verder uit elkaar.
D.
een interferentiepatroon met de maxima dichter bij elkaar.
4.
Hoe verhouden zich de mogelijke kinetische energieën van een gebonden deeltje in
een ééndimensionale doosje?
A
B
C
D
Als 1 : 1 : 1 : ...
Als 1 : 2 : 3 : ...
Als 1 : 4 : 9 : ...
Als 1 : 2 : 3 : ...
2
5
Een deeltje bevindt zich in een ééndimensionale doos in de eerste aangeslagen toestand. Er
volgen hierover twee beweringen.
I.
II.
De kans het deeltje bij de randen van de doos aan te treffen is gelijk aan nul.
De kans het deeltje in het midden van de doos aan te treffen is gelijk aan nul.
Welke bewering(en) is (zijn) juist?
A
B
C
D
6
Geen van beide.
Alleen I.
Alleen II.
Beide.
Nevenstaande structuurformule is de
algemene formule voor een bepaald
type organische kleurstof.
De kleur van de stof hangt af van ℓ.
De zogenaamde -elektronen kunnen
vrij langs de keten over lengte ℓ bewegen
en gedragen zich daarom als deeltjes in een
doosje met lengte ℓ. Voor k = 0 zijn er zes zulke -elektronen, die verdeeld zijn over
verschillende mogelijke toestanden. Als het molecuul in de grondtoestand zit, kan het
elektromagnetische straling met verschillende frequenties absorberen.
Welke overgang maakt één van de -elektron als het molecuul daarbij straling absorbeert met
de kleinst mogelijke frequentie?
A
B
C
D
7
Nevenstaande figuur is een voorstelling van een bolsymmetrische golffunctie van een elektron in een waterstofatoom.
Hoe donkerder de kleur, hoe groter de amplitudo van de
golffunctie.
Bij welke toestand hoort deze golffunctie?
A
B
C
D
8.
Van de grondtoestand naar de eerste aangeslagen toestand.
Van de tweede naar de derde aangeslagen toestand.
Van de derde naar de vierde aangeslagen toestand.
Van de zesde naar de zevende aangeslagen toestand.
Bij de grondtoestand. (n = 1)
Bij de eerste aangeslagen toestand. (n = 2)
Bij de tweede aangeslagen toestand. (n = 3)
Bij de derde aangeslagen toestand. (n = 4)
We vergelijken γ-verval bij een atoomkern met het terugvallen van een atoom naar een
lagere energietoestand. Welk van de volgende beschrijvingen is van toepassing?
A
B
C
Bij de atoomkern komt meer energie vrij omdat een kern kleiner is en
volgens de formule voor de energie van een deeltje in een doosje de energie
voor kleinere doosjes groter is.
Bij de atoomkern komt minder energie vrij omdat een kern veel kleiner is en
volgens de formule voor de energie van een deeltje in een doosje de energie
voor kleinere doosjes veel kleiner is.
Bij de atoomkern komt meer energie vrij omdat in een kern zwaardere deeltjes
zitten dan in de elektronenwolk eromheen en volgens de formule voor de
energie van een deeltje in een doosje de energie voor zwaardere deeltjes
3
D
9.
groter is.
Bij de atoomkern komt minder energie vrij omdat in een kern zwaardere
deeltjes zitten dan in de elektronenwolk eromheen en volgens de formule voor
de energie van een deeltje in een doosje de energie voor zwaardere deeltjes
veel kleiner is.
We beschouwen onderstaande reactie:
p+ → n + νe + e+
In atoomkernen met meerdere nucleonen is deze reactie:
A
B
C
D
10.
mogelijk.
onmogelijk, want er is geen behoud van lading.
onmogelijk, want er is geen behoud van leptongetal.
onmogelijk, want er is geen behoud van baryongetal.
Hieronder staan twee reactiediagrammen.
Hoe kan het rechterdiagram uit het linkerdiagram worden afgeleid?
A
B
C
D
11.
Een baryon is neutraal en bestaat onder andere uit een down- en een strangequark.
Welk deeltje zou het derde subatomaire deeltje in het baryon kunnen zijn?
A
B
C
D
12.
Door toepassing van ladingomkeer en één kruising.
Door toepassing van één kruising.
Door toepassing van een tijdomkeer en één kruising.
Door toepassing van twee kruisingen.
Nog een down
Nog een strange
Een bottom
Een charm.
Hoe kun je de ontstaansgeschiedenis van onze zon het best beschrijven.
A
B
C
D
Een ijle gaswolk trok onder invloed van de zwaartekracht samen; de door de
wrijving ontstane warmte zorgde voor een hoge temperatuur en druk waardoor fusieprocessen op gang kwamen. Nu houden de gasdruk en de zwaartekracht elkaar in evenwicht.
Een ijle gaswolk trok onder invloed van de zwaartekracht samen; de daarbij
vrijgekomen zwaarte-energie zorgde voor een hoge temperatuur en druk waardoor fusieprocessen op gang kwamen. Nu houden de gasdruk en de zwaartekracht elkaar in evenwicht.
Een ijle gaswolk trok onder invloed van de zwaartekracht samen; de door de
wrijving ontstane warmte zorgde voor een hoge temperatuur en druk waardoor fusieprocessen op gang kwamen. Nu houden de wrijvingskracht en de
zwaartekracht elkaar in evenwicht.
Een ijle gaswolk trok onder invloed van de zwaartekracht samen; de daarbij
4
vrijgekomen zwaarte-energie zorgde voor een hoge temperatuur en druk waardoor fusieprocessen op gang kwamen. Nu houden de wrijvingskracht en de
zwaartekracht elkaar in evenwicht.
Deel II: Open vragen
Opgave 1: De Zon
De zon produceert op dit moment een totaal vermogen van 3,90.1026 W. We nemen in deze hele
opgave aan dat het genoemde vermogen gedurende het hele bestaan van de zon constant blijft. Op dit
moment haalt de zon haar energie voor 100 % uit fusie van waterstof-1 naar helium-4. Bij de
(resulterende) fusiereactie van vier waterstof-1 kernen tot één helium-4 kern komen onder andere ook
twee neutrino’s vrij.
2p
1.
Toon met behulp van behoudswetten aan dat bij de genoemde fusiereactie twee neutrino’s
vrijkomen. Geef ook aan welke behoudswetten je gebruikt.
Bij de vorming van één helium-4 kern komt 26,73 MeV energie vrij. We bekijken nu op aarde een
oppervlak van 1,00 m² dat loodrecht op de zonnestralen staat.
4p 2.
Bereken hoeveel neutrino’s per seconde door dit oppervlak gaan als gevolg van de fusie van
waterstof-1 naar helium-4 in de zon.
Toen de zon werd gevormd bestond zij voor 72 % van haar massa uit waterstof-1 atomen. Alleen de
waterstof die in het centrum van de zon zit wordt heet genoeg om aan kernfusie deel te nemen. Als
gevolg hiervan is slechts 14 % van de totale voorraad aan waterstof-1 voor kernfusie beschikbaar. De
rest blijft ‘onverbrand’ achter in de stervende zon. We nemen aan dat de zon alle energie die ze
produceert moet halen uit de omzetting van waterstof-1 in helium-4 zolang er nog waterstof-1 voor
kernfusie beschikbaar is.
4p 3.
Bereken hoelang de zon vanaf haar ontstaan op haar voorraad aan waterstof-1 kan teren.
Aan het eind van haar bestaan zet de zon nog enige tijd helium-4 om in koolstof-12. Voordat dit
gebeurt moet de temperatuur in het centrum van de zon hoger zijn geworden dan de huidige
temperatuur in het centrum.
3p 4.
Bereken hoeveel MeV er vrijkomt bij de vorming van één koolstof-12 kern uit drie helium-4 kernen.
figuur 1
5
Sterren die zwaarder zijn dan de zon
zullen aan het eind van de
waterstof-verbrandingsfase een nog
groter deel van de waterstofvoorraad in helium omzetten.
Bovendien zal de temperatuur dan
nog verder oplopen waardoor
helium gaat fuseren tot koolstof,
koolstof en helium tot zuurstof en
zo steeds verder tot zwaardere
elementen. Als op een gegeven
moment het centrum van de ster
geheel uit ijzer-56 bestaat kan de
ster geen energie meer putten uit
fusie tot nog zwaardere elementen.
In figuur 1 is een diagram gegeven
waarin de massa per kerndeeltje
(uitgedrukt in u) van atomen is uitgezet tegen het aantal kerndeeltjes.
2p 5.
Leg aan de hand van figuur 1 uit dat de fusie tussen twee ijzer-56 kernen geen energie zal
opleveren, maar juist energie zal kosten.
Opgave 2 Het spectrum van langgerekte moleculen
In bepaalde typen organische kleurstoffen kunnen sommige elektronen over een groot deel van de
lengte van het molecuul vrij bewegen. Het spectrum van dergelijke stoffen kan met enig succes
voorspeld worden met behulp van het model van een quantumdeeltje in een ééndimensionale doos.
Dit is eigenaardig, omdat de beweging van de elektronen in feite natuurlijk is beperkt tot een
weliswaar langgerekte, maar toch zeker driedimensionale ruimte. Daarom moet onderzocht worden
waaraan het eendimensionale model zijn bruikbaarheid ontleent.
Rekening houdend met drie dimensies kan de kinetische energie van een deeltje is geschreven
worden als
E = ( px2 + py2 + pz2 ) / 2m
Een quantumdeeltje wordt nu opgesloten in een
driedimensionale kubus met ribben L.
3p
6. □
Leg uit dat de kinetische energie nu
gegeven wordt door de formule:
E = ( nx2 + ny2 + nz2 ) h2 / 8mL2
Voor het gemak wordt verder aangenomen dat de factor
h2 / 8mL2 een waarde heeft van 1,00 eV.
3p
7. □
2p
8. □
Leg uit dat het spectrum van het deeltje dat is opgesloten in een driedimensionale
kubus duidelijk verschilt van het spectrum van een deeltje in een eendimensionale doos.
Maak een energieniveau-schema van de
vijf laagste (verschillende) energieniveaus voor dit systeem.
Een langgerekte doos heeft energieniveaus die duidelijk verschillen van die van een kubus. De doos
die nu beschouwd wordt heeft in de x-richting nog steeds dezelfde lengte L, maar in de y- en de zrichting een lengte van 0,100 L.
6
3p
9. □
Leg uit dat de energieniveaus voor deze doos worden gegeven door:
E = ( nx2 + 100 ny2 + 100 nz2 ) h2 / 8mL2
3p
10. □ Maak ook voor dit systeem een energieniveau-schema van de vijf laagste
(verschillende) energieniveaus.
4p
11. □ Leg uit hoe het mogelijk is, dat het model van een quantumdeeltje in een
ééndimensionale doos goede voorspellingen geeft voor het berekenen van het spectrum van
sommige langgerekte moleculen.
ANTWOORDBLAD MEERKEUZEVRAGEN
School Examen Project Moderne Natuurkunde
26 maart 2007
Instructies:
 Kies een antwoord door aan te kruisen X.
 Beantwoord elke vraag, ook als je niet zeker bent.
 Ieder goed antwoord levert 1 punt op.
 Als je je antwoord wilt veranderen, dan kras je het ongewenste antwoord duidelijk
door en kruis je een ander antwoord aan (zie voorbeeld).
1.
A
B
C
D
2.
A
B
C
D
3.
A
B
C
D
4.
A
B
C
D
5.
A
B
C
D
6.
A
B
C
D
7.
A
B
C
D
8.
A
B
C
D
7
9.
A
B
C
D
10.
A
B
C
D
11.
A
B
C
D
12.
A
B
C
D
Moderne Natuurkunde: gegevens en formules
Tabel 1: Elementaire deeltjes
Elementaire Deeltjes: Fermionen
Quarks
Genera
tie
1
2
3
Massa
(GeV/c2)
Lading
(e)
Gene
ratie
u up quark
0,003
2/3
1
d down quark
c charm
quark
s strange
quark
t top quark
b bottom
quark
0,006
–1/3
1,3
2/3
0,1
–1/3
175
2/3
4,3
–1/3
Deeltje/smaak
Deeltje/smaak
e
2
3
Leptonen
Massa
(GeV/c2)
Lading
(e)
<1x 10–5
0
0,000511
–1
<0,0002
0
e–

elektron
neutrino
elektron
muon
neutrino
–
muon
0,106
–1
 tau neutrino
<0,02
0
–
1,7771
–1
tau
Elementaire Deeltjes: Bosonen
Sterke interactie
g gluon
0
Gravitatie
Elektrozwakke interactie
0

photon

W W-min-boson
W  W-plus-boson
0
80,4
80,4
0
–1
+1
graviton
91,2
0
Z 0 Z boson
(hypothetisch)
Ieder deeltje heeft een antideeltje, met dezelfde massa en met tegengestelde lading,
baryon- of leptongetal.
Alle genoemde quarks hebben baryongetal 1/3 en leptongetal 0
Alle genoemde leptonen hebben baryongetal 0 en leptongetal 1
Tabel 2: Enkele samengestelde deeltjes
deeltje
samenstelling
baryongetal
p+ proton
uud
1
–
p
anti-proton
–1
uud
n
neutron
udd
1
leptongetal
0
0
0
8
n
–1
0
0
0
pi-nul-meson
udd
ud
ud
uu / dd
0
0
0
0
waterstofatoom
p+e–
1
1
anti-neutron
 pi-min-meson
  pi-plus-meson


0
H
Tabel 3: Formules
Ek 
p2
2m
2
h 2  n x2 n y nz2 
Ek 
 
 
8m  L2x L2y L2z 
9
Download