Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek / Netherlands Organisation for Applied Scientific Research Laan van Westenenk 501 Postbus 342 7300 AH Apeldoorn www.tno.nl TNO-rapport B&O-A R 2005/295 T 055 549 34 93 F 055 549 98 37 Richtlijn reductie broeikasgassen airco-installaties in utiliteitsbouw Datum Oktober 2005 Auteurs Hans van Wolferen Projectnummer 36043 Trefwoorden Broeikasgassen Airco-installaties Utiliteitsbouw Bestemd voor SenterNovem t.a.v. de heer Maus Dieleman Postbus 8242 3503 RE Utrecht Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt door middel van druk, fotokopie, microfilm of op welke andere wijze dan ook zonder voorafgaande toestemming van TNO. Indien dit rapport in opdracht werd uitgebracht, wordt voor de rechten en verplichtingen van opdrachtgever en opdrachtnemer verwezen naar de Algemene Voorwaarden voor onderzoeksopdrachten aan TNO, dan wel de betreffende terzake tussen de partijen gesloten overeenkomst. Het ter inzage geven van het TNO-rapport aan direct belanghebbenden is toegestaan. © 2005 TNO TNO-rapport TNO-B&O-A − R 2005/295 2 van 21 Inhoudsopgave 1. Inleiding .....................................................................................................3 1.1 Doelstelling.................................................................................3 1.2 Uitstoot van broeikasgassen .......................................................3 1.3 Berekeningswijze TEWI.............................................................4 1.4 Stappenplan in de GPG...............................................................5 2. Globaal ontwerp.........................................................................................7 2.1 Beperken koudebehoefte ............................................................7 2.2 Toepassen bodem als koudebron ................................................8 2.3 Selecteren efficiënt distributie- en afgiftesysteem....................10 2.4 Selecteren optimale koelinstallatie ...........................................12 2.4.1 Inleiding ....................................................................12 2.4.2 Koudemiddelen .........................................................13 2.4.3 Koudemiddelinhoud..................................................14 2.4.4 Lekverlies..................................................................14 2.4.5 Koudefactor...............................................................14 2.5 Beoordelen en selecteren koelsysteem .....................................16 3. Gedetailleerd ontwerp ..............................................................................18 3.1 Beperken koudebehoefte ..........................................................18 3.2 Toepassen bodem als koudebron ..............................................18 3.3 Selecteren efficiënt distributiesysteem .....................................18 3.4 Selecteren optimale koelinstallatie ...........................................18 3.5 Beoordelen en selecteren koelsysteem .....................................19 4. Referenties ...............................................................................................20 5. Verantwoording .......................................................................................21 Bijlage 1. Bijlage 2. Bijlage 3. Bijlage 4. Bijlage 5. Berekeningswijze TEWI Beperken koudebehoefte Rendement distributie en afgiftesysteem volgens NEN 2916 Wet- en regelgeving koelinstallaties Eurovent labels voor koelinstallaties TNO-rapport TNO-B&O-A − R 2005/295 3 van 21 1. Inleiding 1.1 Doelstelling Deze richtlijn (GPG – Good Practice Guide) is bedoeld voor gebouweigenaren/beslissers, bouwadviseurs en installatiebureaus die bij nieuwbouw of grote renovatie van utiliteitsgebouwen streven naar koelsystemen met een lage uitstoot van broeikasgassen en een laag energiegebruik. Hiermee leveren zij een bijdrage aan het verminderen van de opwarming van de aarde. De richtlijn beperkt zich tot de koelfunctie van klimaatinstallaties in middelgrote en grotere kantoorgebouwen, zorgcentra en verpleeghuizen. De richtlijn is bedoeld voor gebruik in de initiatieffase of globale ontwerpfase als nog weinig gedetailleerde projectgegevens beschikbaar zijn. De richtlijn geeft concrete aanbevelingen voor het Programma van Eisen. Daarnaast kan de richtlijn worden gebruikt in de gedetailleerde ontwerpfase en geeft concrete aanbevelingen voor het Programma van Eisen en voor het bestek. 1.2 Uitstoot van broeikasgassen Broeikasgas is de verzamelnaam voor gassen die een bijdrage leveren aan de opwarming van de aarde door het broeikaseffect. De bijdrage aan het broeikaseffect door een gas wordt uitgedrukt in de hoeveelheid CO2 die een vergelijkbaar broeikaseffect veroorzaakt: het Globale Warming Potential (GWP in kg CO2 / kg gas). CO2 heeft dus een GWP van 1. Koelinstallaties in de utiliteitsbouw veroorzaken bij gebruik op twee manieren uitstoot van broeikasgassen: − Indirecte emissie is de CO2-emissie die ontstaat door het brandstofverbruik t.b.v. de opwekking van elektriciteit voor aandrijving van de koelmachines en het brandstofverbruik van de koelmachines. Deze indirecte emissie heeft met 80 – 100 %.het grootste aandeel in de totale emissie. − Directe emissie ontstaat door lekkage van het koudemiddel. De traditionele koudemiddelen hebben een groot broeikasgaseffect (hoge GWP). De directe emissie heeft een aandeel tot 20 % in de totale emissie. De totale uitstoot van broeikasgassen wordt aangeduid met de TEWI (Total Equivalent Warming Impact), de som van directe en indirecte emissies. De TEWI berekening is hieronder uitgewerkt. De TEWI kan op twee manieren worden gepresenteerd: − TEWI totaal – geeft de totale broeikasgasbijdrage van het gehele koelsysteem in ton CO2 per jaar. Hiermee kan de score van verschillende uitvoeringen voor één gebouw worden vergeleken. TNO-rapport TNO-B&O-A − R 2005/295 4 van 21 − 1.3 TEWI specifiek – geeft de TEWI per m2 vloeroppervlak (BVO) in ton CO2 per jaar per m2. Hiermee kan tevens de score van verschillende gebouwen worden vergeleken. Berekeningswijze TEWI De TEWI van een koelinstallatie tijdens de gebruiksfase is de som van de directe en indirecte emissie; in formule: TEWI = Edir + Eindir Waarbij de directe emissie wordt bepaald door de koudemiddelinhoud, het verlies en het Global Warming Potential (GWP) van het koudemiddel; in formule: Edir = Mkm * Vkm * GWPkm De koudemiddelinhoud is in veel situaties recht evenredig met het koelvermogen: Mkm = Pnom;koel * Mkm;spec De indirecte emissie voor elektrisch aangedreven koelinstallaties wordt bepaald door het primair energiegebruik voor het elektrisch verbruik, de CO2-emissie bij de opwekking van elektriciteit en de GWP van CO2 (die per definitie gelijk is aan 1): Eindir = Qprim;koel * EmCO2;el *GWPCO2 De indirecte emissie voor voor gasgedreven koelinstallaties wordt bepaald door het primair energiegebruik (gas) van de koleinstallatie, de CO2-emissie bij het verbruik van aanrdgas en de GWP van CO2: Eindir = Qprim;koel * EmCO2;gas *GWPCO2 Waarbij het primair energiegebruik voor koeling wordt bepaald door De netto koudebehoefte, het distributie- of systeemrendement en het (primair) opwekrendement van de koelinstallatie: Qprim;koel = Qbeh;koel / (ηdistr;koel * ηopw;koel) Het primair opwekrendement voor elektrisch aangedreven koelinstallaties wordt bepaald door de COP op jaarbasis (ook wel aangeduid of SPF of SEER) en het opwekrendement van de elektrische centrale: ηopw;koel = COPkoel * ηel TNO-rapport TNO-B&O-A − R 2005/295 5 van 21 Voor gasgedreven koelinstallaties is het primair opwekrendement gelijk aan de COP op jaarbasis: ηopw;koel = COPkoel Met: TEWI Edir Eindir Mkm Vkm GWPkm Pnom;koel Mkm;spec Qprim;koel Qbeh;koel ηdistr;koel ηopw;koel COPkoel ηel EmCO2;el EmCO2;gas GWPCO2 1.4 Total Equivalent Warming Effect in ton CO2/jr Directe CO2 emissie in ton CO2/jr Indirecte CO2 emissie in ton CO2/jr Koudemiddelinhoud in kg Verlies koudemiddel per jaar als aandeel van de totale koudemiddelinhoud GWP (Global Warming Potential) waarde van het koudemiddel in ton CO2 / ton koudemiddel Nominaal koelvermogen in kW Specifieke koudemiddelinhoud in kg/kW nom. koelvermogen Jaarlijkse primair energiegebruik t.b.v. koeling van gebouw in MJ/jr Jaarlijkse netto koudebehoefte van gebouw in MJ/jr Distributie(systeem)rendement van het koelsysteem Opwekrendement van de koelinstallatie op bw, inclusief het opwekrendement van de elektrische centrale, indien van toepassing. COP van het koelsysteem op jaarbasis. Opwekrendement van de elektrische centrale op bw. Waarde ηel = 0,39 volgens de NEN 2916. CO2 emissie bij de opwekking van elektriciteit in ton CO2/MJ primaire energie op bw Waarde 0,61 kg CO2 / kWhe, ofwel 0,066 kg CO2/ MJprim op bw CO2 emissie bij het verbruik van aardgas in ton CO2/MJ aardgas op bw GWP (Global Warming Potential) waarde van CO2 (= 1) Stappenplan in de GPG Om in utiliteitsbouw een koelsysteem te kiezen met een lage uitstoot van broeikasgassen en een laag energiegebruik wordt het volgende stappenplan gevolgd: TNO-rapport TNO-B&O-A − R 2005/295 6 van 21 Start stappenplan Aanbevelingen voor beperken koudebehoefte Aanbevelingen voor toepassen bodemkoeling Aanbevelingen voor keuze efficiënt distributiesysteem Bodemkoeling? nee Aanbevelingen voor koelinstallatie met natuurlijke koudemiddelen, laag lekverlies en hoge COP ja Berekening TEWI Economie Beoordeling / keuze koelsysteem Stop Figuur 1 Stappenplan reductie broeikasgasemissie. In het stappenplan wordt eerst getracht het energiegebruik voor koeling zo laag mogelijk te maken om zodoende de indirecte emissie te verlagen. Hiermee wordt tevens een lage EPC-waarde bereikt. Hiervoor wordt de beproefde werkwijze van de “trias energetica” gevolgd: − beperken koudebehoefte, − opwekken met duurzame bronnen, − verhogen rendement koudeopwekkers. Om een laag energiegebruik te bereiken wordt aangesloten bij bestaande, op energiebesparing gerichte methodieken, zoals de Energieprestatienorm EPN [1] en de QuickScan warmtepompen (haalbaarheid). Als daar behoefte aan is kan voor een aantal gebouwvarianten en koelsystemen de TEWI worden bepaald. De samenhang tussen het stappenplan en de berekening van de TEWI is gegeven in Bijlage 1. In de hierna volgende paragrafen wordt voor elke stap in het GPG stappenplan de concrete informatie aangereikt, met richtlijnen voor het beoordelen van de varianten. TNO-rapport TNO-B&O-A − R 2005/295 7 van 21 2. Globaal ontwerp 2.1 Beperken koudebehoefte Het beperken van de koudebehoefte heeft o.a. de volgende voordelen: − lager koelvermogen, dus: - betere mogelijkheden om de bodem als koudebron toe te passen (geen directe emissie); - kleinere koudemiddelinhoud koelinstallatie, dus lagere directe emissie; - kleiner en goedkoper koelsysteem. − lager energiegebruik, dus lagere indirecte emissie, lagere energiekosten en een lagere EPC waarde. Voor het beperken van de koudebehoefte zijn reeds uiteenlopende ontwerpinstrumenten (ISSO 37, VA 114, HENK) en beoordelingsinstrumenten (NEN 2916) beschikbaar. Voor het globaal ontwerp is vooral ISSO 37 “energiewijzer kantoorgebouwen” [2] geschikt. Met de Quickscan warmtepompen [3] kan de resulterende koude- en warmtevraag worden berekend, op basis van een beperkte set invoergegevens. Hierdoor kan zelfs in de initiatieffase van het ontwerp al een goede indicatie worden verkregen van de te verwachten koude- en warmtevraag. De Quickscan kan via Internet worden gebruikt. De richtlijnen voor het beperken van de koudebehoefte in utiliteitsbouw zijn hieronder gegeven. Beperk de zontoetreding buiten het stookseizoen: − Buitenzonwering of zonwerende gevels (indien mogelijk) met geautomatiseerde regeling. − Binnenzonwering (als buitenzonwering niet mogelijk is) − Bescheiden glaspercentage (maximaal 50% aan buitenzijde) − Dubbel glas met spectraal selectieve coating (HR++). Als buitenzonwering wordt toegepast kan een hoger glaspercentage worden toegepast zonder grote invloed op de koudebehoefte. Beperk de interne last door verlichting: − Kies voor verlichting een laag geïnstalleerd vermogen (bijvoorbeeld HF verlichting). − Zorg voor voldoende toetreding van daglicht, zodat het gebruik van verlichting kan worden beperkt (daglichtregeling). − Zorg voor een goede, geautomatiseerde regeling van de verlichting (aanwezigheidsdetectie) Beperk de interne last door elektrische apparatuur: − Voorkom dat apparatuur standby staat buiten werktijden. Zorg voor een lage luchtdoorlatendheid (goede kierdichtheid) van de gevel en / of op CO2 concentratie geregelde ventilatie. TNO-rapport TNO-B&O-A − R 2005/295 8 van 21 Voorkom opwarming met warme buitenlucht door toepassing van warmteterugwinning bij gebalanceerde ventilatie (voornamelijk in dagbedrijf als de buitentemperatuur hoger is dan de binnentemperatuur). Gebruik koude buitenlucht om het gebouw af te koelen (nachtventilatie, voornamelijk in de avond en nacht als de buitentemperatuur lager is dan de binnentemperatuur). Eventueel aanwezige warmteterugwinning wordt hierbij niet benut. De eventueel aanwezige minimum inblaastemperatuur regeling dient te zijn uitgeschakeld. Maak gebruik van de thermische massa van het gebouw om de opwarming overdag te verminderen. Hierdoor wordt het piekvermogen verlaagd en wordt de bijdrage van nachtventilatie vergroot. In Bijlage 2 is een indicatie gegeven van het effect van de verschillende maatregelen. In het algemeen kan gesteld worden dat het gebruik van (buiten)zonwering of een laag glaspercentage en het beperken van de interne last door verlichting de koudebehoefte het meeste verlagen. Nachtventilatie heeft een minder groot effect maar kan in alle systemen met mechanische afvoer (en toevoer) van lucht eenvoudig worden gerealiseerd. Voor het berekenen van de TEWI dient voor één of meer gebouwvarianten de koudebehoefte en het nominaal koelvermogen te worden bepaald. 2.2 Toepassen bodem als koudebron De meest energiezuinige manier van koeling is het gebruik van de bodem als koudebron. De bodem kan op drie manieren als warmte- en koudebron worden gebruikt: − Aquifer − Bodemwarmtewisselaars − Energiepalen (bodemwarmtewisselaar in heipaal) In de regel wordt de bodem gebruikt als bron van warmte èn koude omdat voor het goed functioneren van dergelijke systemen een balans tussen de warmte- en koudevraag over een jaar vereist is. Voor aquifers met een wateropbrengst van meer dan 10 m3/h wordt door de provincie een vergunning vereist, waarbij een balans in warmte- en koudevraag een vereiste is. De warmte is in de regel op een te laag temperatuurniveau beschikbaar om direct te gebruiken voor verwarming en wordt naar het gewenste temperatuurniveau gebracht met een warmtepomp. Een verwarmingstoepassing zonder warmtepomp is het voorverwarmen van buitenlucht in de luchtbehandelingskast. Traditionele koelsystemen worden in de regel ontworpen en bedreven op 6 / 12°C. De bedrijfstemperatuur van bodemsystemen is minimaal 10°C, maar kan in de loop van de zomer oplopen. Daarom worden koelsystemen waarvan de temperatuur TNO-rapport TNO-B&O-A − R 2005/295 9 van 21 door de bodem wordt bepaald aangeduid als hoge temperatuur (HT) koeling, in de regel ontworpen en bedreven op 12 / 18°C. Deze HT- koude kan op twee manieren worden benut: − Direct, waarbij het temperatuurniveau van de bodem / het grondwater voldoende laag is om de gewenste koelbehoefte te vervullen. Dit vereist een aangepast ontwerp (groter VO) van het distributie- en afgiftesysteem. Voorbeelden van afgiftesystemen die bij hogere temperaturen werken zijn klimaatplafonds. − Als koudebron voor een koelmachine, waarmee koud water voor een traditioneel 6 / 12°C koelsysteem wordt verzorgd. Voor het ontwerp van bodemsystemen zijn de volgende richtlijnen beschikbaar: − ISSO 39 “Langetermijnkoudeopslag in de bodem”, gericht op aquifers [4]. − ISSO 73 “Ontwerp en uitvoering van verticale bodemwarmtewisselaar” [5]. Voor het beoordelen van de haalbaarheid van de bodem als warmte- en koudebron zijn reeds uiteenlopende ontwerpinstrumenten en informatieve websites beschikbaar. Meestal worden de geschiktheid van de bodem en de haalbaarheid van warmtepompen in samenhang beschouwd: www.nvoe.nl Nederlandse Vereniging voor Ondergrondse Energieopslagsystemen www.stichtingwarmtepompen.nl Stichting warmtepompen www.warmtepompenindeglastuinbouw.nl Novem. Hier staat ook bodemkaart informatie waarop men met eigen postcode volledig geïnformeerd wordt over de geschiktheid van de lokale bodem, zoals de meest geschikte watervoerende laag met eventuele bijzondere vergunningsaspecten en de geraamde investeringskosten. Voor het toepassen van bodem als koudebron zijn de volgende aandachtspunten van belang. − Beoogde functie van het klimaatsysteem, de warmtepomp(en) en het bodemsysteem − Beschikbaarheid van de bodem: overige infrastructuur; − Bruikbaarheid van de bodem: waardeoordeel fysische eigenschappen; *) − Juridisch: eventueel benodigde vergunningen; *) − Financiële middelen: kostenindicatie. *) * zie hiervoor b.v. de bodemkaart op www.warmtepompenindeglastuinbouw.nl. Op basis hiervan kan een keuze over de toepassing van de bodem als koudebron gemaakt worden. TNO-rapport TNO-B&O-A − R 2005/295 10 van 21 Als de bodem als koudebron wordt gebruikt (zonder verdere inzet van koelinstallaties) mag voor het berekenen van de TEWI een opwekrendement met de waarde 12 * ηel worden gehanteerd voor het verbruik van de circulatiepompen van het bronsysteem. (Waarde ηel = 0,39 volgens de NEN 2916). 2.3 Selecteren efficiënt distributie- en afgiftesysteem Voor het ontwerp van de installatie (zowel opwekking als distributie, afgifte en regeling) is nog geen samenhangende ontwerpmethodiek beschikbaar. Een aantal instrumenten verdient vermelding, zoals ISSO 43 [6] en ISSO 44 [7], de BOAaanpak voor de globale opbouw van de installatie en de EOS-methode [9] voor optimale instelling van de klimaatinstallatie. Voor de beoordeling is ook hier de NEN 2916 beschikbaar. Deze norm geeft een vrij gedetailleerde differentiatie naar distributiesysteem voor de verliezen (zie Bijlage 3). De koudedistributie kan op zeer uiteenlopende manieren gebeuren en vormt een integraal onderdeel van de klimaatinstallatie voor verwarmen, ventileren, koelen en eventueel ontvochtigen en bevochtigen. Hierbij kunnen drie systemen worden onderscheiden, waarop meerdere varianten mogelijk zijn: − Luchtsystemen Hierbij vervult de inblaaslucht de belangrijkste rol in de klimatisering en vooral de koeling van de ruimten. De ventilatielucht wordt centraal voorverwarmd (winter) of voorgekoeld (zomer) volgens een stook- of koellijn. Traditioneel wordt de koeling met een waterkoelinstallatie op 6 / 12 °C verzorgd. Het is ook mogelijk met een bodemsysteem mits het VO van de warmtewisselaar in de luchtbehandelingskast vergroot wordt wegens de hogere bedrijfstemperaturen van een bodemsysteem. Kenmerken van deze systemen zijn: - De ventilatiehoeveelheid wordt bepaald door de koel- of verwarmingsbehoefte. Dit veroorzaakt een hogere hoeveelheid inblaaslucht dan vereist is uit oogpunt van ventilatie, dus grote luchtkanalen e.d. en een groter verbruik van hulpenergie voor de ventilatoren. - Regeling van de koeling en verwarming per ruimte is bij een aantal systeemvarianten niet goed mogelijk (single duct, constant volume). - De koeling en verwarming kan bij een aantal systeemvarianten per ruimte worden geregeld door een vorm van hoeveelheidregeling (dual duct of VAV). − Watersystemen De naam verwijst naar het cv- en koelwater waarmee de warmte en koude naar de diverse ruimten wordt getransporteerd via 2-, 3- of 4-pijpsystemen om daarmee de fan-coil units, inductie-units, vloer- of plafond systemen te voeden waarmee de verwarming en koeling verzorgd wordt. De naregeling gebeurt meestal met een thermostaat per ruimte. Daarnaast kan de ventilatielucht in de TNO-rapport TNO-B&O-A − R 2005/295 11 van 21 − luchtbehandelingskast worden voorgekoeld of –verwarmd. Traditioneel wordt de koeling met een koelinstallatie op 6 / 12 °C verzorgd. Om het rendement van de koelmachine te verbeteren wordt tegenwoordig ook hoge temperatuur (HT) koeling toegepast, in de regel ontworpen en bedreven op 12 / 18°C. De koeling kan ook met een bodemsysteem worden verzorgd, mits een HT systeem wordt toegepast. HT systemen vereisen grotere warmtewisselaars of een afgiftesysteem dat hogere temperaturen vereist, zoals klimaatplafonds. De hoeveelheid inblaaslucht is afgestemd op de vereiste ventilatie. De fan-coil en inductie units verwarmen of koelen de inblaaslucht en eventueel circulerende lucht uit de betreffende ruimte. Kenmerken van deze systemen zijn: - De ventilatiehoeveelheid wordt bepaald door de ventilatiebehoefte. Luchtkanalen e.d. op maat. - Goede regelmogelijkheden van verwarming en koeling per ruimte. - In 2-pijpsystemen wordt centraal overgeschakeld van koelen naar verwarmen, - In 3- en 4-pijpsystemen kan tegelijkertijd (in verschillende ruimten ) worden gekoeld en verwarmd. Directe of DX systemen. Directe systemen zijn koelinstallaties waarbij de koude (en warmte voor omkeerbare systemen) met het koudemiddel naar de afgifte-units in de verschillende ruimten wordt getransporteerd. Het direct gebruik van de koude uit een bodemsysteem is dus niet mogelijk. De koelinstallatie kan wel gebruik maken van de bodem als koudebron. Directe systemen kunnen worden gebruikt in combinatie met zowel natuurlijke ventilatie, mechanische afzuiging en gebalanceerde ventilatie. In het laatste geval wordt de inblaaslucht meestal voorbehandeld op dezelfde wijze als bij watersystemen. Voor de systeemkeuze zijn de volgende overwegingen van belang: − Luchtsystemen zijn vooral geschikt als de koude- of warmtevraag zodanig laag is dat geen grotere ventilatiehoeveelheid vereist is om het vermogen over te dragen dan uit oogpunt van ventilatiebehoefte vereist is. Bij een grotere warmte- of koudevraag worden watersystemen of directe systemen aanbevolen. − Als de koude- of warmtevraag van ruimten onderling grote verschillen vertoont, komen alleen systemen die een goede regeling per ruimte mogelijk maken in aanmerking, waardoor een deel van de luchtsystemen afvalt. − In drie-pijps watersystemen wordt het koude en warme retourwater gemengd, waardoor onvermijdelijke energieverliezen optreden. Daarom worden deze systemen in het algemeen ontraden. Goede alternatieven zijn twee-pijps (changeover) en vier-pijps watersystemen. − De drie systemen vereisen uiteenlopende ruimte voor de warmte- en koudedistributie. Onderstaande tabel geeft hiervan een illustratie. TNO-rapport TNO-B&O-A − R 2005/295 12 van 21 − Bij toepassing van een bodemsysteem voor de koeling zijn watersystemen het meest voor de hand liggend. Tabel 1 Kenmerken systemen bij 30 kW koelvermogen. Medium Temperaturen Flow Afmetingen distributie Water Lucht 6 / 12 °C 14 °C, 85 % RV / 24 °C, 50 % RV vloeistof / gas 1 m/s 6 m/s 2 x Ø 40 mm (inwendig) 2 x 600 x 600 mm 0,21 kg/s vloeistof / 20 m/s gas Ø 12,5 mm / Ø 28 mm Koudemiddel Na de keuze van het distributiesysteem wordt voor het berekenen van de TEWI het distributierendement bepaald volgens de NEN 2916; zie ook Bijlage 3. Voor systemen waarin de norm niet voorziet wordt een rendement van 90% aangehouden. 2.4 Selecteren optimale koelinstallatie 2.4.1 Inleiding Als de bodem niet als koudebron wordt gekozen dient een optimale koelinstallatie te worden gekozen uit het oogpunt van broeikasgasreductie en energiebesparing. De directe emissie door lekkage van het koudemiddel wordt bepaald door: − de GWP-waarde (broeikasgaseffect) van het koudemiddel; − de koudemiddelinhoud; − het jaarlijks lekpercentage; Het energiegebruik en de indirecte emissie worden bepaald door de koudefactor (COP) op jaarbasis van de koelinstallatie. Voor een optimale installatie gelden de volgende richtlijnen: − gebruik koudemiddelen met een laag broeikasgaseffect; − selecteer een koelinstallatie met een geringe koudemiddelinhoud; − beperk het lekverlies van de koelinstallatie; − selecteer een koelinstallatie met hoge koudefactor. Deze punten worden hieronder uitgewerkt. In Bijlage 4 is de wet- en regelgeving voor koelinstallaties samengevat. TNO-rapport TNO-B&O-A − R 2005/295 13 van 21 2.4.2 Koudemiddelen In nieuwe koelinstallaties mogen alleen koudemiddelen worden toegepast die de ozonlaag niet aantasten: HFK’s en natuurlijke koudemiddelen. De HCFK’s, zoals R22, tasten de ozonlaag aan en mogen niet meer worden toegepast in nieuwe installaties. De koudemiddelen die toegepast kunnen worden in airco-installaties hebben sterk uiteenlopende GWP-waarden. Synthetische koudemiddelen zijn sterke broeikasgassen en hebben een hoog GWP tussen 1300 en 1900. Natuurlijke koudemiddelen, zoals ammoniak en propaan, tasten de ozonlaag niet aan en zijn (vrijwel) geen broeikasgassen. Tabel 2 Global Warming Potential (GWP) van koudemiddelen. Koudemiddel Synthetische koudemiddelen (HFK) R134a R407C R410A Natuurlijke koudemiddelen R717 (ammoniak) R290 (propaan) CO2 GWP (ton CO2 / ton koudemiddel ) 1300 1610 1890 0 3 1 Momenteel worden synthetische koudemiddelen het meest toegepast in aircoinstallaties. Toepassing van een natuurlijk koudemiddel met een laag GWP heeft de voorkeur. Bij toepassing van natuurlijke koudemiddelen zijn er echter aanvullende veiligheidsmaatregelen vereist: − Ammoniak is van oudsher een belangrijk koudemiddel in de industriële sector en is geen broeikasgas. Toepassing van ammoniak is vanwege z’n toxische, en in geringe mate brandbare, eigenschappen omgeven met veiligheidsmaatregelen. Moderne ammoniak installaties streven uit veiligheidsoogpunt naar een zo klein mogelijke koudemiddelinhoud. Indirecte systemen zijn in dit opzicht duidelijk in het voordeel, zowel door een veel kleinere koudemiddelinhoud als door een goede beheersing van de veiligheidsrisico’s door concentratie van de ammoniakhoudende systeemdelen. In plaats van traditionele pompsystemen worden ook wel directe expansie systemen toegepast. − Koolwaterstoffen zoals propaan (GWP van 3) worden vanwege hun brandbaarheid en de daarmee samenhangende veiligheidsmaatregelen in de industriële koeling tot nu toe alleen toegepast in de olie- en gas industrie, waar reeds een streng veiligheidsregiem heerst. TNO-rapport TNO-B&O-A − R 2005/295 14 van 21 2.4.3 Koudemiddelinhoud Voor de koudemiddelinhoud mag 0,25 kg koudemiddel per kW koelvermogen worden verondersteld. Voor multi-splitsystemen met lange leidingen (100 m en meer) kan de koudemiddelinhoud oplopen tot 1 kg koudemiddel per kW koelvermogen. 2.4.4 Lekverlies Als vuistregel mag het jaarlijkse lekpercentage worden gebruikt zoals gegeven in onderstaande tabel. Voor specifieke koelinstallaties zijn hierover in de regel geen specificaties beschikbaar. Tabel 3 Lekverliezen van koelinstallaties. Type koelinstallatie Water-koelinstallaties − Package unit − Split systeem Lekverlies richtwaarde 2 %. 3,5 % Split systemen, DX 3,5 % DX in LB-kast 3,5 % 2.4.5 Toelichting Compacte en robuuste bouw koelinstallatie waarbij het gehele koudemiddelcircuit in de fabriek is gemonteerd en getest. Gemonteerd en met koudemiddel gevuld op locatie. Gevoelig voor montage. Koudefactor Voor de beoordeling van de koudefactor (COP) is ook hier de NEN 2916 beschikbaar. Voor de opwekking is een indeling beschikbaar die nauwelijks onderscheid maakt naar type koudemachine. De inzet van de bodem voor koeling wordt in de NEN 2916 hoog gewaardeerd. Tabel 4 Opwekrendement koelinstallaties volgens NEN 2916 (EPN U-bouw). Koudeleverancier ηopw;koel Compressiekoelmachine Absorptiekoelmachine − op warmtelevering door derden − op WK Koudeopslag warmtepomp in zomerbedrijf 4 * ηel 0,7 * ηequiv;verw;wd 1,0 * εwk;th 12 * ηel 5 * ηel In de praktijk zijn een aantal verschillend etypen koelinstallaties te onderscheiden die hierboven onder de verzamelnaam compressiekoelmachine vallen. TNO-rapport TNO-B&O-A − R 2005/295 15 van 21 Hieronder is voor deze verschillende typen een indicatie gegeven van de koudefactor op jaarbasis die verwacht mag worden als het koelproces op vergelijkbare wijze is uitgevoerd. Tabel 5 Koudefactor op jaarbasis voor verschillende typen koelinstallaties. Type koelinstallatie Referentie Water-koelinstallaties met compressorkoeler – Met luchtgekoelde condensor 3,5 – Met verdampingscondensor 4,5 – Met watergekoelde condensor 3,0 en droge koeltoren – Met watergekoelde condensor 4,5 en natte koeltoren – Met watergekoelde condensor 6-8 en grondwater Water-koelinstallaties met absorptiekoeler – Met luchtgekoelde condensor -1 – Met watergekoelde condensor -1 en droge koeltoren – Met watergekoelde condensor -1 en natte koeltoren – Met watergekoelde condensor -1 en grondwater Splitsystemen, DX – Single-split – Multi-split - Met luchtgekoelde condensor - Met watergekoelde condensor en droge koeltoren - Met watergekoelde condensor en natte koeltoren - Met watergekoelde condensor en grondwater DX in luchtbehandelingskast 1 Compressor toerenregeling & elektronisch expansieventiel HT afgiftesysteem (de kolom geeft de extra Kf) 4 5 3,5 +1 +1 +1 5 +1 8 – 10 +3 nvt nvt -1 -1 nvt -1 nvt -1 3 4,5 nvt 3,5 5 nvt 3 4,5 nvt 4 5,5 nvt 6–8 8 - 10 +3 3 4 nvt Onvoldoende beschikbare gegevens voor representatieve waarde Voor de verdere TEWI berekening kunnen nu na selectie van de gewenste koelinstallatie(varianten) de volgende gegevens worden bepaald uit de voorgaande tabellen: − De GWP van het gekozen koudemiddel − De koudemiddelinhoud − De fractie lekverlies − De koudefactor (COP) TNO-rapport TNO-B&O-A − R 2005/295 16 van 21 2.5 Beoordelen en selecteren koelsysteem Op basis van de hiervoor geselecteerde gebouw(varianten) en installatie(varianten) wordt de TEWI bepaald volgens het berekeningsschema van Bijlage 1. Dit kan voor meerdere varianten gebeuren omdat naast de reductie van broeikasgassen ook economische factoren van belang zijn en een afweging gewenst is. Voor de economische afweging tussen installatievarianten zijn o.a. de volgende aspecten van belang: − Kosten (aanvullende) bouwkundige voorzieningen, zoals zonwering. Bouwkundige meerkosten kunnen tot een aanzienlijk kleinere en goedkopere installatie leiden. − Investeringskosten koelsysteem Bron, koelinstallatie, distributie en afgifte, regeling. − Kosten energiegebruik koelinstallatie Zowel aandrijving als hulpenergie. Vastrecht kan aanzienlijk lager uitvallen bij beperking van aandrijfvermogen koelinstallatie. − Onderhoudskosten. In het globaal ontwerp kan alleen met globale kostenkentallen voor de koelinstallatie gewerkt worden. Een indicatie van investeringskosten wordt gegeven in Tabel 6. Systemen met een laag energiegebruik en een lage TEWI vergen vaak hogere investeringskosten dan traditionele systemen. In veel gevallen kunnen deze meerkosten binnen enige jaren worden terugverdiend. Desondanks kan in veel projecten het probleem ontstaan dat de hogere investeringskosten uitvoering onmogelijk maken door budgetbeperkingen. Een mogelijke oplossing hiervoor is het onderbrengen van (een deel van) de energiefuncties bij een energiedienst. Deze energiedienst verzorgt de financiering en exploitatie, waardoor de (meer)investering buiten het investeringsbudget blijft en verrekend wordt in de exploitatielasten. TNO-rapport TNO-B&O-A − R 2005/295 17 van 21 Tabel 6 Investeringskosten koelinstallaties in Euro/kW koelvermogen (bron: Deerns). TNO-rapport TNO-B&O-A − R 2005/295 18 van 21 3. Gedetailleerd ontwerp 3.1 Beperken koudebehoefte De koudebehoefte kan voor een concreet ontwerp worden bepaald met de geëigende hulpmiddelen, zoals VA 114, of HENK. Deze worden meestal reeds ingezet voor de Temperatuur Overschrijdings Berekening. Met de Quickscan warmtepompen [3] kan eveneens de resulterende koude- en warmtevraag worden berekend, op basis van een beperkte set invoergegevens. De Quickscan kan via Internet worden gebruikt. Tenslotte dient voor de EPC berekening de koudebehoefte te worden bepaald volgens NEN 2916. 3.2 Toepassen bodem als koudebron Als wordt gekozen voor toepassing van de bodem als koude- (en warmte)bron kan een globale uitwerking worden gemaakt voor de volgende aspecten: − Benadering van: aantal, lengte en plaatsing van de bodemwarmtewisselaars t.o.v. het gebouw en de benodigde ruimte (grondoppervlak); − Indicatie van de kosten; − Uitgangspunten m.b.t. specifiek piekvermogen van de bodemwarmtewisselaars en jaarlijkse energie-uitwisseling; − Randvoorwaarden t.a.v. de laagst en hoogst toelaatbare mediumtemperatuur; − Het gebruik van antivries; − Randvoorwaarden t.a.v. de toelaatbare hulpenergie; − Bouwkundige consequenties i.v.m. muur en/of vloerdoorvoeringen. 3.3 Selecteren efficiënt distributiesysteem Voor het eerdere gekozen distributiesysteem wordt het distributierendement bepaald volgens NEN 2916 (zie Bijlage 3). 3.4 Selecteren optimale koelinstallatie Na de keuze voor een type koelinstallatie te hebben gemaakt dient nu een specifieke koelinstallatie te worden geselecteerd. Hierbij spelen dezelfde aspecten een rol: − Koudemiddelinhoud. Conform opgave leverancier. − Lekverlies. Hiervan zijn zelden specifieke gegevens bekend. Daarom wordt gebruik van de eerder genoemde richtwaarden aanbevolen. TNO-rapport TNO-B&O-A − R 2005/295 19 van 21 − − − − 3.5 Koudemiddel. Conform opgave leverancier. Koudefactor op jaarbasis. De koudefactor op jaarbasis kan in de regel niet door de leverancier worden gegeven, behoudens b.v. de systemen waarvoor een gelijkwaardigheidsverklaring is opgesteld. De classificatie van koelinstallaties volgens Eurovent (Bijlage 5) (en soortgelijke) labels is echter geen harde indicatie voor de classificatie van de jaarprestaties, omdat: Het deellastgedrag van de installaties sterk uiteen kan lopen. Sommige installaties leveren in deellast vergelijkbare prestaties als in vollast, andere installaties zien hun prestaties in deellast scherp dalen. De bedrijfscondities over het jaar afhankelijk zijn van het temperatuurniveau van het koelwater (droge koeltoren, natte koeltoren, grondwater) of buitenlucht (geringe of grote opwarming aan de condensor) en van de afgiftetemperaturen, en deze zijn weer bepalend zijn voor de jaarprestaties. Beoordelen en selecteren koelsysteem Op basis van de specifieke gebouw(varianten) en installatie(varianten) wordt de TEWI bepaald volgens het berekeningsschema van Bijlage 1. Dit kan voor meerdere varianten gebeuren omdat naast de reductie van broeikasgassen ook economische factoren van belang zijn en een afweging gewenst is. Voor de economische afweging tussen installatievarianten zijn dezelfde aspecten van belang als bij de globale afweging. Nu kan echter een concrete afweging worden gemaakt tussen specifieke systemen en installaties. TNO-rapport TNO-B&O-A − R 2005/295 20 van 21 4. Referenties [1] NEN 2916 – Energieprestatie van utiliteitsgebouwen - Bepalingsmethode NEN, Delft, december 2001 [2] ISSO publicatie 37 – Energiewijzer kantoorgebouwen ISSO, Rotterdam, juli 1995 [3] Quickscan warmtepompen Site: www.warmtepompenindeglastuinbouw.nl [4] ISSO 39 - Langetermijnkoudeopslag in de bodem ISSO, Rotterdam, 1997 [5] ISSO 73 - Ontwerp en uitvoering van verticale bodemwarmtewisselaar ISSO, Rotterdam, 2005 [6] ISSO 43 - Concepten voor klimaatinstallaties ISSO, Rotterdam, 1998 [7] ISSO 44 –Het ontwerp van hydraulische schakelingen voor verwarming ISSO, Rotterdam, 1998 [8] ISSO 48 – Klimaatplafonds / koelconvectoren: richtlijnen voor ontwerp en uitvoering ISSO, Rotterdam, 1998 [9] ISSO 68 – Energetisch optimale stook- en koellijnen ISSO, Rotterdam, 2002 TNO-rapport TNO-B&O-A − R 2005/295 21 van 21 5. Verantwoording Naam en adres van de opdrachtgever: SenterNovem t.a.v. de heer Maus Dieleman Postbus 8242 3503 RE Utrecht Namen en functies van de projectmedewerkers: Hans van Wolferen Miep Verwoerd Charles Geelen Namen van instellingen waaraan een deel van het onderzoek is uitbesteed: - Datum waarop, of tijdsbestek waarin, het onderzoek heeft plaatsgehad: Januari – oktober 2005 Ondertekening: Goedgekeurd door: Ir. J. van Wolferen projectleider Ing. A.A.L. Traversari MBA afdelingshoofd