yjKKfUÖ^2^ IMMUNOLOGIE VAN DE KARPER GER RIJKERS tekeningen: Wim Valen tikwerk tV\ : IT-M : Anke Hoeksma INHOUD bladzijde VOORWOORD 3 CELLET IMMUNOLOGIE antigenen en antistoffen 8 humorale en cellulaire immuniteit 11 organen 12 immunologische reactie 13 TECHNIEKEN rozet test 15 piaque test 15 schübtransplantie 16 IMMUNOLOGIE VAN DE KARPER 18 VOORWOORD Proefschriften worden in het algemeen nauwelijks gelezen. In de meeste gevallen beperkt men zich tot de laatste stelling, het dankwoord en de levensloop. Hiervoor zijn 3 (goede) redenen aan te wijzen: 1) de tekst is meestal in het Engels gesteld, 2) het onderwerp is erg gespecialiseerd en zeker voor een leek nauwelijks te begrijpen, 3) wetenschappelijke teksten zijn saai. In dit gedeelte van het proefschrift wilde ik vertellen wat ik gedurende 3 jaar met "die karpers" gedaan heb. De tekst is in het nederlands, verder heb ik geprobeerd ook het 2e en 3e argument te ondervangen. Ik hoop dat U na het lezen van dit gedeelte met mij de volgende stelling kunt onderschrijven: Immunologie is niet moeilijk. ALGEMEEN Om zinvol te kunnen praten over immunologie is het noodzakelijk om eerst iets te vertellen over cellen, DMA, RNA, aminozuren, eiwitten etc. Iedereen heeft deze termen vast wel eens ergens gehoord, maar de betekenis en onderlinge samenhang zal niet iedereen duidelijk zijn. CELLEN Een cel kunnen we omschrijven als de kleinste eenheid binnen een organisme die nog tot alle basisfuncties in staat is. Als basisfunctie beschouwen we het in leven blijven en het in staat zijn om zich te delen. Omdat definities nooit zo erg duidelijk zijn (definitie van een stoel?) volgen hier enkele voorbeelden. Zoals een huis is opgebouwd uit stenen, een rekenmachientje uit chips, zo zijn dieren en planten opgebouwd uit cellen. Hogere dieren en planten zijn opgebouwd uit zeer veel cellen (de mens b.v. uit 2 à 300.000.000.000.000 c e l l e n ) . Uit de definitie van een cel volgt dat er ook organismen kunnen voorkomen bestaande uit één enkele cel. Voorbeelden hiervan zijn bacteriën en het pantoffeldiertje. Het pantoffeldiertje heeft het vermogen tot bewegen, voedsel- en zuurstofopname verenigd in die ene cel. De cellen van hogere organismen zijn gespecialiseerd, dat wil zeggen elke cel heeft z'n eigen functie. Specialisatie van cellen bij dieren cel rode bloedcel darmcel spiercel functie transport van zuurstof opname van voedsel beweging Een cel moet aan een aantal vereisten voldoen om in leven te kunnen blijven en om zijn speciale functie uit te kunnen oefenen. Deze vereisten zullen we bespreken aan de hand van een voorbeeld: de plasma cel. De functie van een plasmacel is het produceren van antilichamen of antistoffen (daar komen we later nog uitvoerig op t e r u g ) . Binnen een cel kunnen we verschillende onderafdelingen onderscheiden: een informatiecentrum (de k e r n ) , energiecentrales (mitochondriën), fabrieken (ribosomen), afvalverwerkingsbedrijven ( l y s o s o m e n ) , inpakafdelingen (Golgi-apparaat) en verder nog een infrastructuur (endoplasmaties reticulurn). Zie fig. 1. Fig. 1: De onderdelen van een cel. Om te voorkomen dat deze processen in de soep lopen (de afvalverwerking gaat het informatiecentrum opruimen) zijn al deze onderafdelingen van elkaar gescheiden door een tussenwandje (membraan). De cel als geheel is ook omgeven door een wand, de celmembraan. Deze celmembraan zorgt er niet alleen voor dat het hele zaakje bij elkaar gehouden w o r d t , maar ook dat grondstoffen (voor de fabrieken en de energiecentrale) naar binnen of naar buiten kunnen. Een organisme ontstaat door versmelting van een eicel met een zaadcel. Door deling van deze ene cel ontstaan dan 2 cellen, die zich weer delen, enz. Dat dit snel kan aantikken is bekend uit de parabel van de graankorrel en het schaakbord (fig. 2 ) .Wanneer we links bovenaan met 1 graankorrel beginnen, op het 2e vakje 2 korrels, op het 3e vakje 4, e n z . , bereiken we vrij snel de wereld graan productie. In fig. 2 zien we ook waar we uitkomen voor een volwassen mens als we links boven op het schaakbord beginnen met een eicel en een zaadcel. Bij deling wordt de erfelijke informatie (opgeslagen in de kern) keurig verdeeld over de twee cellen. Hierbij gaat geen informatie verloren, want voordat een cel zich deelt, wordt eerst alle informatie gecopieerd zodat de twee nieuwe cellen weer de oorspronkelijke hoeveelheid bezitten. Het gevolg hiervan is dat elke cel dus alle erfelijke informatie bezit. t k g GRAAN JAARUJKSEWERELDGRAANPRODUCTIE BABV. 1DAG 10TON URAAN Fig. 2:De graankorrel ophet schaakbord. De erfelijke informatie in de kern is gecodeerd. We kunnen dit vergelijken meteen computer, waar de informatie opeenmagneetband (DNA) gecodeerd ligt. Alsereen bepaalde opdracht moet worden uitgevoerd, b.v. de produktie vananti1ichamen, danwordt in de kern het benodigde stukje informatie overgeschreven op "boodschapper RNA".Deze boodschapper brengt de opdracht (in code) over naar de ribosomen, die zich buiten de kern verspreid in decel bevinden. Er zijn verschillende -DNA: «»»SÄ? BOODSCHAPPER^ CELMEMBRAAAI RIBOSOMEN KERN / / GRANULAIR ENDOPLASMATIES RETICULUM / ^ Wv © 9 J 60LÖI APPARAAT Fig. 3: Aanmaak van eiwitten. (py\ > J ANTILICHAMEN soorten ribosomen. Zo zijn er losse ribosomen die eiwitten maken voor eigen gebruik, zoals b.v. eiwitten die nodig zijn voor de vervanging van versleten onderdelen. Ribosomen die eiwitten maken die bestemd zijn voor de export (zoals b.v. anti1ichamen) liggen op het endoplasmaties reticulum zodat de eiwitten meteen naar de inpakafdelingen getransporteerd kunnen worden. Endoplasmaties reticulum met ribosomen erop noemt men granulair endoplasmatisch reticulum ( G E R ) ; kant-en-klare eiwitten worden door het Golgi-apparaat ingepakt in blaasjes. Door middel van deze blaasjes worden de eiwitten uitgescheiden (fig. 3 ) . Eiwitten zijn opgebouwd uit aminozuren. Er zijn 20 verschillende aminozuren. De eigenschappen van een eiwit worden bepaald door het a a n t a l , de samenstelling en de volgorde van de aminozuren. We kunnen eiwitten vergelijken met w o o r d e n . Woorden zijn opgebouwd uit letters. Er zijn 26 verschillende letters. De betekenis van een woord wordt bepaald door het a a n t a l , de samenstelling en de volgorde van de letters. IMMUNOLOGIE Alle gewervelde dieren zijn uitgerust met een bewakingssysteem (immuunsysteem), dat er voor zorgt dat binnengedrongen vreemde stoffen of cellen onschadelijk gemaakt worden. Deze vreemde zaken kunnen bijvoorbeeld bacteriën zijn of virussen of eiwitten. Een immuunsysteem moet om die ongewenste bezoekers (die we antigenen noemen) te herkennen, onderscheid kunnen maken tussen "vreemd" en "eigen". Onder eigen verstaan we de cellen, eiwitten, hormonen enz. waaruit het lichaam is opgebouwd. Dit vermogen om onderscheid te kunnen maken is erg belangrijk omdat het natuurlijk niet de bedoeling van het immuunsysteem is om het eigen lichaam af te breken. Een voorbeeld uit de praktijk kan veel van de immunologie duidelijk maken. Als je een griepje oploopt kun je een paar dagen goed ziek zijn. Het griepvirus is dan je lichaam binnengedrongen en is zich daar naar hartelust aan het vermenigvuldigen. Na enige tijd ben je echter weer genezen. Wat er zich in de tussentijd heeft afgespeeld is het volgende: het immuunsysteem heeft het virus als vreemd herkend en het daarna onschadelijk gemaakt. Antigenen en antistoffen Vreemde stoffen roepen een bepaalde reactie op wanneer ze bij mens of dier worden ingespoten. De vreemde stoffen noemen we met een verzamelnaam antigenen. Men heeft gevonden dat voor het oproepen van een immunologische reactie niet een compleet eiwit of een hele cel nodig is. Een groepje van 6-7 aminozuren is al voldoende. Zo'n eenheid noemen we antigene déterminant. Als reactie op het inspuiten van een antigeen worden antistoffen geproduceerd. Deze antistoffen binden specifiek met het antigeen: dat wil zeggen ze reageren alléén met het antigeen waarmee het dier is ingespoten en nergens anders mee. Specificiteit is één van de belangrijkste kenmerken van een immunologische reactie. A-griep virus: wél reactie A-griep virus antistoffen Hongkong griep virus: geen reactie Antistoffen, die ook wel immunoglobulines worden genoemd, komen voor in het bloed, maar ook in de rest van het lichaam. Bij mensen komen verschillende soorten immunoglobulines voor. De belangrijkste zijn IgG en IgM (Ig = Immunoglobuline, G en M geeft de klassea a n ) . In figuur 4 staan IgG en IgM schematisch getekend. Het gearceerde gedeelte van het immunoglobuline bindt (specifiek) aan het antigeen. We zien dat IgG 2 bindingsplaatsen heeft, IgM zelfs 10. zoogdier IgG IgM 0 # specifiekebinding o l f Klontering Fig. 4: Antistoffen We zien dat immunoglobulines zich kunnen binden aan 1ichaamsvreemde stoffen. Dit alleen is echter niet voldoende om b.v. een ziekteverwekkende bacterie onschadelijk te maken. Dit onschadelijk maken kan op twee manieren gebeuren: de eerste manier is door macrofagen (fig.5) Deze holle bolle Gijzen zijn grote cellen die graag rommel opruimen. Ze doen dat niet specifiek; alles wat vreemd is wordt opgepeuzeld (macrofaag betekent letterlijk veelvraat), Fig. 5: Macrofaag Omdat immunoglobulines meerdere bindingsplaatsen hebben, zijn ze in staat om antigenen aan elkaar te doen klonteren. Deze samengeklonterde antigenen zijn dan extra lekker voor macrofagen. Een tweede manier waarop antigenen onschadelijk gemaakt worden nadat antilichamen gebonden zijn is de volgende. In het bloed bevindt zich een hele reeks van stoffen die we met een verzamelnaam het complementsysteem noemen. Wanneer een antilichaam gebonden is aan een antigeen (fig. 6) verandert er iets aan het antilichaam waardoor het eerste deel van het complementsysteem (Cl) gebonden wordt. Cl activeert dan C 2 , C3 activeert C4 enz. totdat het laatste deel C9 geactiveerd wordt. C9 is een stof die de membraan van de vreemde cel doet oplossen, waardoor de vreemde cel gedood wordt. Fig. 6: Werking van complement. De belangrijkste kenmerken van het immuunsysteem zijn de specificiteit en de vorming van (immunologisch) geheugen. Tegen griep kun je je in laten enten. Je krijgt dan een injectie met gedood griepvirus. Omdat het virus dood is kan het zich niet meer ver- 10 menigvuldigen en kun je van zo'n injectie niet ziek worden. Het immuunsysteem herkent het griepvirus echter wél als vreemd en reageert daarop. Er worden antistoffen gevormd, maar er wordt ook immunologisch geheugen opgewekt. Na een griepspuit ben je niet meer vatbaar. Dit betekent echter niet dat je dan niet meer met het virus besmet kunt raken. Het virus dringt nog wel het lichaam binnen, maar het immuunsysteem reageert zo snel en zo doeltreffend dat het virus al onschadelijk gemaakt is voordat het je ziek heeft kunnen maken. Je bent dan immuun voor de griep. Het immunologisch geheugen, dat daarbij gevormd w o r d t , houdt lang aan. De bekende DTKP prikken maken je gedurende de rest van je leven immuun voor difterie, tetanus, kinkhoest en polio. Toch biedt een griepspuit over het algemeen maar bescherming voor één jaar; het volgend jaar kun je toch weer de griep krijgen. Dit wordt niet veroorzaakt door een kortdurend immunologisch geheugen maar heeft alles te maken met de specificiteit van het immuunsysteem. Een griepepidemie krijgt - net als orkanen - een naam: de A-griep, de Hongkonggriep enz. Men gebruikt die verschillende namen omdat het telkens weer een ander virus betreft. Alhoewel die verschillende virussen wel allemaal griep veroorzaken, verschillen ze onderling zó sterk dat het immuunsysteem zich niet meer herinnert daarmee ooit in aanraking te zijn geweest. Een A-griep spuit biedt dan ook geen bescherming tegen een infectie met het Hongkong-griep virus. Humorale en cellulaire immuniteit In de immunologische reacties die we tot nu toe besproken hebben wordt de vreemde stof onschadelijk gemaakt met behulp van anti1ichamen. Men noemt deze vorm van verdediging humoral immuniteit. Humoraal betekent vloeibaar. Een dergelijke naam is gekozen omdat deze vorm van immuniteit overgebracht kan worden door een dier met serum van een immuun dier in te spuiten. De cellen die betrokken blijken te zijn bij humorale reacties heten B-lymfocyten. Een andere vorm van immuniteit is de zogenaamde cellulaire immuniteit. Voorbeelden uit de praktijk zijn de afstoting van een getransplanteerd orgaan en de Mantoux-reactie (krasjes bij TBC-controle ) . Bij een cellulaire immunologische reactie worden geen antilichamen gemaakt, de vreemde cel wordt onschadelijk gemaakt door direct contact met een lymfocyt (fig. 7 ) .De lymfocyten betrokken bij cellulaire immuniteit noemt men T-lymfocyten. De twee kenmerken van een immunologische reactie specificiteit en geheugen gelden voor zowel humorale als cellulaire reacties. 11 Fig. 7. Organen Belangrijke immuunorganen bijde mens zijn milt, thymus (zwezerik), beenmerg, lymfeklieren en in mindere mate tonsillen (amandelen)en appendix (blinde darm). T-lymfocyten komen uit de thymus en B-lymfocyten worden aangemaakt inhetbeenmerg. Vissen bezitten geen beenmerg of lymfeklieren. De belangrijkste organen bijeenvis zijn thymus, milt, kopnier en nier.(fig.8 ) . A B C D A thymus B kopnier C milt D nier Fig. 8: Immuunorganen bijde karper De thymus bestaat vrijwel uitsluitend uit lymfocyten, in milt, kopnier en nier komen naast lymfocyten ook veel rode bloedcellen en granulo- 12 cyten voor. Behalve in de immuunorganen komen lymfocyten ook voor in het bloed waar ze behoren tot de witte bloedlichaampjes. Immunologische reactie Wat gebeurt er nu precies als een vreemde stof het lichaam is binnengedrongen. We hebben al besproken dat antilichamen specifiek een vreemde stof kunnen binden. Lymfocyten hebben antilichamen aan hun celoppervlak. Door middel van deze oppervlakte-anti1ichamen zijn ze in staat om vreemde stoffen te herkennen. Deze herkenning is specifiek, d.w.z. een lymfocyt herkent maar één bepaalde vreemde stof en een vreemde stof wordt maar door één lymfocyt (of een groepje identieke lymfocyten) als vreemd herkend. In figuur 9 is deze specifieke herkenning vergeleken met een aangerande maagd (lymfocyt) die met haar hand (oppervlakte-anti1ichaam) uit een hele reeks van verdachten haar aanvaller (vreemde cel) herkent aan de vorm van zijn oren (antigene determin a n t ) . Fig. 9: Specifieke herkenning Nadat de herkenning heeft plaats gevonden (tussen vreemde stof A en lymfocyt a) gaat de desbetreffende lymfocyt zich delen. Op die manier ontstaan er veel lymfocyten die allemaal specifiek zijn voor de vreemde stof A. Daarna veranderen (differentiëren met een mooi woord) de 13 lymfocyten in plasmacellen. Plasmacellen produceren veel anti1ichamen (specifiek gericht tegen vreemde stof A) en deze antilichamen komen onder andere in het bloed terecht. De manier waarop antilichamen een vreemde stof herkennen en onschadelijk maken hebben we reeds besproken. Nadat herkenning heeft plaatsgevonden veranderen gelukkig niet alle lymfocyten in een plasmacel. Een gedeelte wordt namelijk geheugencel. Deze geheugencellen zorgen ervoor dat als er weer een infectie met vreemde stof A optreedt het hele proces van herkenning tot en met antilichaamproductie veel sneller en heftiger verloopt. Als voorbeeld dient een grafiek va.n het aantal plasmacellen in de kopnier van een karper tijdens een eerste en een herhaalde reactie (fig. 10). dagennainjectie Fig. 10: Een eerste (A) en herhaalde (A) immunologische reactie in de kopnier van een karper ingespoten met schape rode bloedcellen. 14 TECHNIEKEN In dit hoofdstukje worden enkele technieken besproken die gebruikt zijn bij het onderzoek van het immuunsysteem van de karper. Rozet test Met behulp van de rozet test is het mogelijk om het aantal lymfocyten gericht tegen een bepaalde vreemde stof te bepalen. We maken daarbij gebruik van het feit dat de oppervlakte-anti1ichamen van een lymfocyt een vreemde stof kunnen binden. Van een karper die ingespoten is met konijne rode bloedcellen (KRBC) verwijderen we de milt. De milt wordt fijngeknipt en door een fijnmazig gaasje gewreven zodat we een oplossing krijgen bestaande uit losse miltcellen. Aan deze celsuspensie voegen we KRBC toe en vervolgens zetten we dit mengseltje een tijdje in de koelkast. Als er in de milt lymfocyten aanwezig waren specifiek gericht tegen KRBC, dan binden de oppervlakte-anti1ichamen van de lymfocyt aan de KRBC. Op die manier ontstaat er een krans van KRBC rondom zo'n lymfocyt: een rozet (fig. 1 1 ) . Door op verschillende dagen na inspuiten het aantal rozetten te tellen kun je een idee krijgen hoe de lymfocyten reageren op deze 1ichaamsvreemde stof. Fig. 11: Rozet vormende cel. PIague test Bij de plaque test bepalen we het aantal plasmacellen dat antilichamen uitscheidt tegen een bepaalde vreemde stof of cel. Als vreemde cel gebruiken we nu niet KRBC maar schape rode bloedcellen ( S R B C ) . Ook hier maken we weer een celsuspensie en mengen deze met SRBC. Bovendien wordt complement aan het mengsel toegevoegd. Dit mengseltje laten we tussen twee microscoop glaasjes lopen. De SRBC en de karpercellen zijn zodanig verdund dat 1) tussen de glaasjes een monolayer 15 ontstaat, d.w.z. de cellen liggen tegen elkaar aanineenenkele laag; 2) er veel meer SRBC zijn dan karpercellen. Alserinhet mengsel plasmacellen aanwezig waren dan gaan deze cellen tussen de glaasjes rustig door met de taak waar zemeebezig w a r e n , namelijk het maken en uitscheiden vanantilichamen. De antilichamen binden zich aande SRBC, dieimmers in overmaat aanwezig zijn, vervolgens wordt het complement geactiveerd ende SRBC in de buurt vande plasmacel wordengedood. Opdiemanier ontstaat er rondom de plasmacel eengatdatna verloop van tijd methetblote oogkanworden waargenomen. Doorhet aantal gaten (plaques) te tellen komen we teweten hoeveel plasmacellen er aanwezig waren ineen bepaald orgaan. Foto's van plaques staan in appendix IenII. Schubtransplantatie Een methode omde cellulaire immuniteit te testen is door schubben te transplanteren en vervolgens te bekijken hoe lang hetduurt voordat zo'n schub afgestotenis. Bij de karper liggen de schubben als dakpannen over elkaar heen. Het is mogelijk ombijeenviseen schub te verwijderen en daarvoor een schub vaneenandere visinde plaats te zetten. In figuur 12 staat aangegeven hoewe datongeveer gedaan hebben. CONTROLE VREEMDE SCHUBBEN Fig. 12:Schema voor schubtransplantatie. Fig. 13:Schub vaneenvis.Pigmentcellen zijn aangegeven meteen pijl 16 Een getransplanteerde schub wordt herkend als 1ichaamsvreemd en het immuunsysteen neemt daarom maatregelen: de pigmentcellen, die in een normale schub rond zijn (fig. 1 3 ) ,vertakken zich. Wat later krijgt de getransplanteerde schub een meikwit-achtige schijn over zich. Dit wordt veroorzaakt door de lymfocyten die op de vreemde schub afkomen en deze afbreken. Na een aantal dagen verdwijnen de lymfocyten weer en blijft er alleen nog maar een doorschijnend stukje bot over. Op dit moment beschouwen we de schub als afgesoten. 17 IMMUNOLOGIE VAN DE KARPER In het voorafgaande is de karper al af en toe ter sprake gekomen in verband met het immuunsysteem. In appendix I van dit proefschrift staan de resultaten vermeld van onderzoek verricht aan een tropisch visje Barbus aonchonius (prachtbarbeel in het nederlands). Aandacht werd besteed aan de ontwikkeling van het humorale en cellulaire immuunsysteem. Humorale immuniteit werd onderzocht door bij dieren van verschillende leeftijden te kijken naar het aantal plaque vormende cellen dat in de milt ontstaat na inspuiten met SRBC. Cellulaire immuniteit werd onderzocht met schubtransplantaties. De resultaten laten zien dat dieren van 3 maanden al kunnen reageren op SRBC, maar dat het daarna nog wel 6 maanden duurt voordat dit vermogen maximaal is. De cellulaire immuniteit ontwikkelt zich sneller: dieren van 6 maanden oud stoten vreemde schubben even snel af als 9 maanden oude dieren. In appendix II staat hoe we de plaque test bij de karper uitgevoerd hebben. Het grootste probleem was het vinden van een geschikte complement bron. Het bleek dat karper-complement niet het meest geschikt was. Veel beter was kopvoorn, sneep, barbeel en brasem. Omdat de kopvoorn, sneep en barbeel in Nederland erg zeldzaam of zelfs beschermd zijn, hebben we besloten de optimale omstandigheden uit te werken voor brasem-complement. Brasems zijn er gelukkig genoeg, er is zelfs een meer naar genoemd. In appendix III is gekeken naar de reactie van het immuunsysteem van de karper op SRBC bij verschillende temperaturen. Eerst hebben we gekeken in welke organen antilichaam producerende cellen voorkomen. In de kopnier en nier zit ongeveer 90% van het totaal aantal "plaque vormende cellen" (PFC). Slechts 5% zit in de milt en verder komen er nog geringe aantallen PFC voor in het bloed, het hart en de thymus. In figuur 10 staat weergegeven hoe het aantal PFC in de kopnier verloopt bij 24 C. Het hoogste aantal PFC wordt bereikt op dag 9 na inspuiten. Als we de karpers bij een lagere temperatuur houden, dan duurt het langer voordat de piek van de PFC reactie bereikt wordt. Vissen zijn koudbloedige dieren, ze hebben geen vaste lichaamstemperatuur zoals zoogdieren maar de temperatuur van hun lichaam wordt bepaald door de omgevingstemperatuur. Bij lagere temperaturen verlopen alle levensprocessen van een vis trager. Het is daarom niet verwonderlijk dat ook de immuunreactie trager verloopt. Wat echter opviel was dat de hoogte van de reactie (het maximale aantal antilichamen vormende cellen) gelijk was bij alle temperaturen. Van uitstel komt in dit geval dus geen afstel. Een tweede interressant aspect van dit experiment blijkt als je in een grafiek de temperatuur uitzet tegen de dag waarop 18 de piekreactie bereikt wordt (fig. 1 4 ) .We zien dat de grafiek geen rechte lijn vormt maar dat er een "knik" in zit. 80 10. 60. 1 f» 20. ». O 0. 5 K) B 20 25 30 temperatuur("C) Fig. 14: Verband tussen de temperatuur en de immunologische reactie. Dat betekent dat er in de immunologische reactie (het hele proces van herkenning van de vreemde stof tot aan de productie van anti1 i c h a m e n ) stappen zijn die verschillen in t e m p e r a t u u r g e v o e l i g h e i d . In appendix IV staan experimenten beschreven die gedaan zijn om iets te weten te komen over vorming van immunologisch geheugen. We hebben al besproken dat als je een dier met een vreemde stof inspuit er niet uitsluitend specifieke antilichamen gevormd worden maar ook g e h e u g e n c e l l e n . De geheugencellen zorgen ervoor dat na een tweede injectie met dezelfde vreemde stof de reactie sneller en feller i s . De mate van geheugenvorming kun je dus aflezen aan de hoogte van de herhaalde reactie. Karpers zijn ingespoten met 3 verschillende hoeveelheden SRBC (1 m iljar d, 10 miljoen en 100.000 c e l l e n / d i e r ) en langs 2 verschillende routes: in de spieren of in de b l o e d b a a n . De hoogste dosis SRBC geeft de hoogste eerste reactie terwijl bij de laagste dosis nauwelijks een reactie te meten valt. Als je echter na 1 maand de geheugenvorming test door een tweede injectie toe te dienen dan blijkt dat de beste reactie wordt gevonden in dieren die met de middelste dosis geimmuniseerd w o r d e n . Na 6 maanden en 1 jaar is de situatie nog extremer: de hoogste reactie wordt bereikt in dieren geimmuniseerd met de laagste d o s i s . Dat betekent dat de dosis die in een eerste reactie nauwelijks iets doet, het beste is voor de geheugenvorming. Je kunt dit fenomeen ook vertalen in termen van vaccineren (inenten) en bescherming tegen een ziekte ( i m m u n i t e i t ) . Het idee heerst nog steeds dat een vaccin 19 een zo hoog mogelijke anti1ichaamproductie op moet wekken wil het bescherming bieden. Op grond van deze experimenten zou je het tegenovergestelde kunnen beweren: een vaccin biedt pas dan optimale bescherming als het bij een eerste injectie geen antilichamen opwekt. In de laatste twee hoofdstukken, appendix V en V I , wordt beschreven wat voor effecten antibiotica op het immuunsysteem van de karper kunnen hebben. Antibiotica zijn stoffen die de groei van bacteriën remmen. De bekendste zijn penicilline, streptomycine, chlooramphenicol, tetracycline. Antibiotica worden bij de mens gebruikt voor de bestrijding van infectieziektes. In de veehouderij worden ze behalve voor de bestrijding van ziektes ook preventief (ter voorkoming van ziektes) gebruikt. Een bijkomende reden voor het gebruik is de groeibevorderende werking op de dieren. Het werkingsmechanisme is niet voor alle antibiotica gelijk. Penicilline b.v. verstoort de vorming van een goede celwand, waardoor de bacterie, als hij gaat groeien, uit elkaar klapt. Dit kunnen we vergelijken met de gevolgen van een kapotte buitenband van een fiets; de binnenband klapt pas als je hem oppompt. Tetracycline en chlooramphenicol remmen de eiwitfabriek van bacteriën. Antibiotica remmen de groei van bacteriën. Alleen remming van de groei is natuurlijk niet voldoende om een bacterie uit te schakelen, immers zodra je stopt met de behandeling gaan de bacteriën weer rustig verder met groei en deling. Daarom zal altijd het immuunsysteem nodig zijn om de, door antibiotica in bedwang gehouden bacteriën, definitief onschadelijk te maken. Het antibioticum dat we gebruikt hebben in onze experimenten is Oxytetracycline ( o x y T C ) . De scheikundige formule staat in figuur 15. Fig. 15: Oxytetracycline Het antibioticum is op twee verschillende manieren toegediend aan de karper. 20 1. door karpers te voeren met korrels waarin oxyTC meegemengd is. Dit is ook de manier waarop antibiotica in de visteelt worden toegediend. 2. door karpers om de 3 dagen met een oxyTC-oplossing in te spuiten. Bij de behandelde karpers hebben we gekeken of het immuunsysteem nog goed werkte. Het bleek dat het bij k a r p e r s , die met oxyTC waren ingespoten, veel langer duurde voordat getransplanteerde schubben werden afgestoten dan bij controle-dieren. Er waren zelfs schubben die helemaal niet meer werden afgestoten. Injecties met oyxTC remmen dus in sterke mate de cellulaire immuunreacties. De humorale immuniteit wordt sterk geremd door zowel injecties als voeren van oxyTC: test aantal rozet vormende cellen in de milt controle oxyTC voer oxyTC injectie 2,5 16 aantal anti1ichaam producerende cellen: - in de mi11 34 - in de kopnier 86 - in de middennier 55 2 15 15 Zowel het aantal rozet vormende cellen als het aantal antilichaam producerende cellen is sterk verminderd tijdens een humorale respons in met antibiotica behandelde dieren. In latere experimenten hebben we dit effect op de humorale immuniteit verder onderzocht. Daarbij bleek dat vooral de eerste reactie gevoelig voor antibiotica w a s , herhaalde reacties werden niet beïnvloed. Uit deze experimenten kun je concluderen dat er erg voorzichtig met antibiotica moet worden omgesprongen. Immers, wanneer je een ziek dier, dat een bepaalde infectie heeft, met antibiotica gaat behandelen dan gebeuren er twee dingen: a. de bacterie wordt door het antibioticum in zijn groei geremd b. het immuunsysteem van het dier wordt onderdrukt. Als het dier tijdens de antibioticumkuur besmet wordt met een virus, een schimmel of een bacterie die niet gevoelig is voor het antibioticum dan kan het immuunsysteem deze micro-organismen niet meer onschadelijk maken. Tenslotte is het de vraag wie zich na beëindiging van de antibioticum behandeling het snelst herstelt: de bacterie of het immuunsysteem. 21 THE IMMUNE SYSTEMOFCYPRINID FISH CENTRALELANDBOUWCATALOGUS OOOO00021192 printed by P U D O C , Wageningen cover design and i l l u s t r a t i o n s : W.J.A. Valen AAN MIJN OUDERS VOOR RIKY EN JORIS Promotor: dr. J.F. Jongkind, hoogleraar in de celbiologie Co-referent: dr. W.B. van Muiswinkel, wetenschappelijk hoofdmedewerker aan de Landbouwhogeschool Y\V^ Ö2J01 ©i^ GER T . (^ RIJKERS THE IMMUNE SYSTEM OF CYPRINID FISH Proefschri f t t e r v e r k r i j g i n g van de g r a a d van doctor in de landbouwwetenschappen, op gezag vande rector magnificus, dr. H.C.vander Plas, hoogleraar in de organische scheikunde, in hetopenbaar te verdedigen op woensdag 1oktober1980 des namiddags te vier uurin de aula van de Landbouwhogeschool te Wageningen. /sv - //f7& I- o3 h n Ó^o i CONTENTS 9 ABBREVIATIONS ALPHABETICAL LISTOF FISHSPECIES 11 GLOSSARY 13 OPENING REMARKS 14 GENERAL INTRODUCTION Chapter 1.Cells andorgans Chapter 2.Non-lymphoiddefence Chapter 3. Immunoglobulins Chapter 4.Humoral immunity Chapter 5.Cellular immunity Chapter6. Lymphocyte heterogeneity Chapter 7.Factors affecting the 15 19 27 39 47 53 61 immune response 67 Epilogue 71 INTRODUCTIONTOTHE PAPERS 73 GENERAL DISCUSSION 77 SUMMARY 79 SAMENVATTING 81 DANKWOORD 82 CURRICULUMVIT.AE 83 REFERENCES 103 APPENDICES •J ï r ? £ t i \ SEP. 1980 WH d20\. c?Q STELLINGEN Denierbijlagerevertebraten isvergelijkbaarmethetbeenmergvan zoogdieren. Turpen,J.B. (1980)in:Development andDifferentiationofVertebrate Lymphocytes (J.D.Horton, Ed.). Elsevier/NorthHolland BiomedicalPress,pp.15-24. ditproefschrift. II Antibiotica zijnimmuunsuppressief. ditproefschrift III Eenpositievegemengdehaemagglutinatiereactievormtgeenbewijsvoor demultispecificiteitvannatuurlijkeantilichamen. Sigel,M.M.,Lee,J.C., McKinney,E.C.&Lopez,D.M. (1978).Mar.Fish.Rev.,40,6-11. IV HetideevanGorczynskienSteeledatgemuteerdesomatische genenin hetgenoomvangeslachtscellenkunnenworden ingebouwd isattractief enverdientnaderonderzoek. Gorczynski,R.M. SSteele,E.J. (1980)1P.N.A.S.,77,2871-2875. Hetbestuderenvanwetenschappelijke literatuurbuitenheteigenvakgebiedmetalsenigdoelomtoteenstellingtekomenisinstrijdmet degeestvanhetpromotiereglement. VI Debeslissingoverhetaldanniettoekennenvanspreektijdopeen internationaalcongreskanwordenvereenvoudigd doorbijdeaanmelding nieteengeschrevenmaarmondelinge,doordeauteuropeencasettebandjeingesproken,samenvattingteverlangen. VII Indienfietserswerkelijk alsvolwaardigeweggebruikerswordenbeschouwd, danbehorenvrijliggende fietspadentewordenvoorzienvanverlichting enwegmarkering. VIII Deaandachtdieeen"laatste stelling"indemediakrijgtbewijstde overschattingvandemaatschappelijkebetrokkenheid vanacademici. IX DeexportsymbolenFrauAntjeenHansjeBrinkerzijnteprefererenboven hetduovanAgt/vanderKlauwalszijnderepresentatiefvoorde Nederlandsebevolking. ProefschriftvanG.T.Rijkers TheImmuneSystemofCyprinidFish Wageningen,1oktober1980. APPENDIX PUBLICATION I 103 The immunesystemofcyprinidfish.Thedevelopmentofcellularand humoralresponsivenessintherosybarb (Barbus oonohonius) . G.T.RijkersandW.B.vanMuiswinkel (1977) In:Developmental Immunobiology (Ed.byJ.B.SolomonandJ.D.Horton) Elsevier/North HollandBiomedicalPress,Amsterdam p.233-240. APPENDIX PUBLICATION II The haemolytic plaque assay in carp (Cyprinus 113 oarpio) G.T. Rijkers, E.M.H Frederix-Wolters and W.B. van Muiswinkel (1980) J . Immunol. Methods, 33, 79-86. APPENDIX PUBLICATION III 123 The immune system of cyprinid f i s h . Kinetics and temperature dependence of antibody producing c e l l s in carp (Cyprinus oarpio) G.T. Rijkers, E.M.H. Frederix-Wolters and W.B. van Muiswinkel Immunology (in p r e s s ) . APPENDIX PUBLICATION IV 137 The immune system of cyprinid f i s h . The effect of antigen dose and route of administration on the development of immunological memory in carp (Cyprinus oarpio) G.T. Rijkers, E.M.H. Frederix-Wolters and W.B. van Muiswinkel In: Phylogeny of Immunological Memory (Ed. by M.J. Manning) Elsevier/North-Holland Biomedical Press, Amsterdam p . 93-102. APPENDIX PUBLICATIONV Theimmunesystemofcyprinid fish.Theimmunosuppressive effectof theantibioticOxytetracyclineincarp (Cyprinus oarpio L.) G.T.Rijkers,A.G.Teunissen,R.vanOosteromandW.B.van Muiswinkel (1980)Aquaculture,19,177-189. 149 APPENDIXPUBLICATIONVI Theimmunesystemofcyprinidfish.Oxytetracyclineandthe regulationofhumoralimmunity incarp [Cypvinus aarpio) G.T.Rijkers,R.vanOosteromandW.B.vanMuiswinkel (submittedforpublication). 165 ABBREVIATIONS ABC AcBSA BALT B cell BGG BSA C1-C9 CD CG antigen binding c e l l ( s ) acetylated bovine serum albumin bronchus associated lymphoid t i s s u e bursa (equivalent) derived lymphocyte bovine gamma globulin bovine serum albumin components of the complement system c i r c u l a r dichroism chicken globulin conA CRP complement concentration bringing about 50°i lysis of a standard dose indicator erythrocytes concanavalin A C-reactive protein CVF DNP dinitrophenol CH 50 DTH EDTA ERM Fab Fe FHM FSP GALT HA H chain HGG HL HMW HRBC HSA Ig IHN IPN J chain K f KLH K o L chain LMW cobra venom factor delayed type h y p e r s e n s i t i v i t y ethylenediaminetetraacetic acid e n t e r i c redmouth disease antigen binding fragment of immunoglobulin c r y s t a l l i z a b l e fragment of immunoglobulin f a t head minnow fructosan specific protein gut associated lymphoid tissue haemagglutinating heavy chain human gamma globulin haemolysing high molecular weight horse red blood cells human serum albumin immunoglobulin infectious haemopoietic necrosis infectious pancreatic necrosis joining chain functional association constant keyhole limpet hemocyanin i n t r i n s i c association constant l i g h t chain low molecular weight LPS MI lipopolysaccharide migration i n h i b i t i o n MLR mixed leukocyte reaction MST MW NIP median survival time molecular weight 3-iodo-4-hydroxy-5-nitrophenyl a c e t i c acid NNP 3,5-dinitro-4-hydroxy-phenyl a c e t i c acid OSA oxyTC Pen PFC PHA O-antigen of Salmonella abortus Oxytetracycline penicillin antibody forming cells/plaque forming c e l l s phytohaemagglutinin PPD PVP PWM RBC purified protein derivate of tuberculin polyvinylpyrrolidone pokeweed mitogen red blood c e l l s RE c e l l s RFC S?n SAQ reticulo-endothelial cells r o s e t t e forming c e l l s sedimentation coefficient (in Svedberg units) sum of squared differences slg SRBC surface immunoglobulin sheep red blood c e l l s T cell TNP UV VHS thymus derived lymphocyte trinitrophenol ultra violet virus haemorrhagic septicemia WC white c e l l s 10 ALPHABETICAL LIST OF FISH SPECIES commonname scientificname arrowana Osteoglossum bicirrhosum Myxine glutinosa Barbus barbus Atlantichagfish barbel bigmouthbuffalo black-spotbarb bluegill latiobus ciprinellus Barbus filamentosus Lepomis macroohirus bluegoUrami Trichogaster bluestripedgrunt Haemulon sciurus bowfin Amia calva Abramis brama Lampetra reissneri bream brooklamprey browntrout carp channelcatfish chinooksalmon chub cod cohosalmon trichoptevus Salmo trutta Cyprinus carpio latalurus punctatus Oncorhynohus tshawytsha leuciscus oephalus Gadus gadus Oncorhynohus kisitoh cunner Carassius carassius Tautogolabrus adspersus dab Limanda limanda dace dogfish Leuciscus leuciscus Scyliorhinus caniculus eel Anguilla anguilla (Litman,Kreutzmann) eel Anguilla chrysypa (Nardi) Anguilla vulgaris (vonHagen) Pimephales promelas Platichthys flesus Lepisosteus platyrhincus (McKinney,Clem) Lepisosteus osseus (Acton) Carassius auratus Epinephelus itaria Rhinobatus productus Lebistes reticulatus Heterodontus francisai Crusiancarp eel fatheadminnow flounder gar gar goldfish grouper guitarfish guppy hornedshark icefish Notothenia Japaneseeel Anguilla rossii japonioa 11 commonname scientificname killifish Fundulus heteroclitus lat janus synagris Negaprion brevirostris Triakis semifasoiata Haemulon album Tilapia mossambioa Chondrostoma nasus Gingly'mostoma cirratum Eptatretus stouttii Polyodon spathula Perca fluviatilis Esox luoius Pleuroneotes platessa Lepomis gibbosus Barbus nigrofasaiatus Salmo gairdneri Ambloplites rupestris Barbus oonohonius Anoplopoma fimbria Salmo salar Petromyzon marinus Raja naevus Mustelus oanis Lutjanus griseus Onoorhynohus nerka Dasiatis amerioana Barbus lateristriga Dasiatis centrouva Centrarchidae sp. Cymatogaster aggregata Morone amerioana Pseudopleuroneotes amerioanus lane snapper lemon shark leopardshark margate Mozambique mouthbrooder nase nurse shark Pacific hagfish paddlefish perch pike plaice pumpkin seed purple-headed barb rainbow trout rock bass rosy barb sable fish salmon sea lamprey skate smooth dogfish snapper sockeyesalmon southernray spannerbarb stingray sunfish surfperch whiteperch winterflounder 12 GLOSSARY allograft anamnestic graft derived from one animal and t r a n s planted to a genetically different animal of the same species. reaction the manifestation of immunological memory whereby a second or subsequent exposure to an antigen leads to a greater or more rapid reaction than the f i r s t . anaphy Iaxis a major type of immediate hypersensitivity dependent on the formation of antigen-antibody complexes. The reaction i s accompanied by pathological symptoms i n tissues and organs due to the release of pharmacologically active agents. autograft a graft in which the donor and r e c i p i e n t are the same individual. delayed type hypersensitivity a s t a t e of increased r e a c t i v i t y to an antigen, depending on previous s e n s i t i z a t i o n , giving r i s e to a specific inflammatory reaction in the area where the antigen i s localized. migration mixed inhibition leukocyte the i n h i b i t i o n of the movement of cultured macrophages by a factor released by s e n s i t i z e d lymphocytes. reaction t h e transformation of leukocytes into b l a s t c e l l s in mixed cultures of leukocytes from normal allogeneic individuals xenograft a graft between individuals of different species. 13 OPENING REMARKS There are several reasons for studying the immune system of f i s h : 1) From a phylogenetic point of view fish are i n t e r e s t i n g because they are the f i r s t group of animals in which an immune system characterized by the presence of immunoglobulins occurs. 2) The immune system of poikilotherms - including fish - is dependent upon the environmental temperature offering the unique p o s s i b i l i t y to manipulate the immune response by a mere variation in temperature. 3) When studying the ontogeny of the immune response oviparous fish are p a r t i c u l a r i n t e r e s t i n g because the early stages and free swimming larvae are readily accessible to experimental work. 4) A b e t t e r understanding of the immune system of fish may aid i n prophylaxis and therapy of fish diseases in fish c u l t u r e . In the General Introduction relevant data about fish immunology w i l l be discussed. Since i t is not the i n t e n t i o n of t h i s thesis to review the whole f i e l d of comparative immunology, data are r e s t r i c t e d to fishes although a comparison with invertebrate defence mechanisms and mammalian immune systems w i l l be made when needed. During the l a s t 5-10 years the i n t e r e s t in fish immunology has accumulated in a vast number of publications. However the data are d i f f i c u l t to unify: only in the introduction of t h i s t h e s i s 69 species are mentioned. During evolution the different classes of fish have diverged long before mammals were present. For t h i s reason i t i s d i f f i c u l t , i f not impossible, to draw definite conclusions when comparing data of species belonging to different c l a s s e s . In t h i s respect i t i s worthwhile to mention the observation of Heuzeroth, Resch, Richter & Ambrosius (1973) who studied the degree of s i m i l a r i t y of immunoglobulins. The differences between classes of fishes were as large as the differences between other vertebrate orders (e.g. amphibians and marnais). Even within one class of fish data are d i f f i c u l t to compare due to a variety of immunization schedules and antigens used. Moreover, species may differ in t h e i r p r e f e r e n t i a l temperature. In the Epilogue an attempt w i l l be made to give a general and more personal idea about the immune system of bony fish. In most experiments described in this thesis carp (Cyprinns oarpio L. 1758) were used. This animal was chosen because i t i s an excellent experimental animal for biological s t u d i e s . In addition i t i s worthwhile to mention t h a t t h i s species,Tilapia and salmonids form the base for large scale fish culture in the world. 14 GENERAL INTRODUCTION CHAPTERI CELLSANDORGANS Cells Atthelightmicroscopicalaswellaselectron-microscopical levellymphocytes, plasmacells,mononuclearphagocytesandgranulocytesoffishcloselyresemble their mammaliancounterparts. Lymphocytesaresmallroundcellswithalargenucleusandasmallrimof basophilic cytoplasm (Weinreb,1963;Ferguson,1976b;Mattison&Fänge, 1977; Kreuzmann,1977;Davina,Rijkers,Rombout,Timmermans&vanMuiswinkel, 1980). Plasmacellspossessinganeccentricnucleuswithaprominentnucleolusanda cytoplasmpackedwithroughendoplasmic reticulumhavebeenobservedinrainbow trout (Chiller,Hodgins,Chambers&Weiser,1969;Etlinger,Hodgins&Chiller, 1978). Monocytesandmacrophageshavebeendescribedinfishbutaconfusingnomenclatureisusedbymanyauthors (seereviewofEllis, 1977a).Thesameholdstrue forgranulocyte identification.Adescriptionofthemorphologyandadiscussionon thenomenclatureofthese cellsispublishedbyBarber&Westermann (1975, 1978), Ellis (1977a)andDavinaetal. (1980). ©Lymphoid cellsaswellasmononuclearphagocytesandgranulocytesofmammals andfisharequite comparablewhenmorphological criteriaareused. Lymphoid organs Themostprimitivevertebrates,thehagfish lackonmorphologicalgroundsa definitethymusandspleen (Harboe,1963).Haematopoietic fociarepresentinthe laminapropriaoftheentiregutlenght (Good,Finstad,Pollara&Gabrielsen, 1966).Thepronephros,which containsnephrostomes,istransformedpartly intolymphoidtissue (Gérard, 1954;Fänge, 1966).Inperipheralbloodofsealamprey,cells wereobservedwhichresembledmammalian lymphocytes.Aprimitive spleenislocated inaninvaginationofanteriorguttissue.Erythro-,thrombo-,granulo-andlymphopoiesis occursinthisorgan.Aprimitivebonemarrow,locatedinthefibrocartilaginousprevertebralarch,hasbeenobserved.Thebonemarrowcontains haematopoietic tissue;proliferationoflymphoidcellswasobservedafterstimulationwithbovine gammaglobulin (BGG).Adefinite thymusisabsentinlamprey.However,smallgroups oflymphoidcellsintheepitheliumofthepharyngealgutterareconsideredasa primitive thymus (Goodetal., 1966). 15 Fromtheevolutionarypointofview,theguitarfish (aprimitiveElasmobranch) isthefirstrepresentativewhere athymus is found. Itisafully developed, encapsulated lymphoidorganwithawellorganizedcortexandmedulla.Inthespleen aredandwhitepulpareaisfound.Furthermore lymphoidtissuewas foundinthegut andinthegonads.InthemoreadvancedElasmobranchs,theleopardsharkandnurse shark,awelldeveloped thymusandspleenwerepresent.Abundantlymphoid tissue wasalsofoundalongthegastrointestinaltractandinthegonads.Thekidneydid notcontainlymphoidcells.Cells,identicaltomammalianplasmacells,were found amongthelymphoidcellsinspleenandgonads (Goodet al., 1966). TheChondrosteanpaddlefishhasawell-developedthymusorganizedintolobules. Peripheralbloodcontains large,mediumandsmalllymphocytes.Thespleeniswell developedandclearlydivided intoredandwhitepulp.Plasmacellswereobserved inspleenandinhaematopoietictissueoverlyingtheheart.Theholosteanbowfin hasathymuswith somedegreeoforganization intocortexandmedulla.Thespleen isadiscreteorganwithtissuecomponentsdistributedintoredandwhitepulp (Goodet al., 1966). Inholostean fishauniqueorganisfound,themeningeal myeloidtissue,which isactively involvedinhaemopoiesis andthoughttobe primitivebonemarrow (Scharrer,1944;McLeod,Sigel&Yunis, 1978). Inteleost fish,nouniformityexists inthehistological appearanceof lymphoidorgans.Forinstancethethymusofeel (vonHagen,1936)andMozambique mouthbrooder (Sailendri&Muthukkaruppan, 1975)isclearlydividedintoacortex andamedullawhereasthisdistinctioncanhardlybemade inthesalmonandrainbow trout (Ellis,1977b;Grace&Manning, 1980).A spleenwith redandwhitepulpis foundinMozambiquemouthbrooder (Sailendri &Muthukkaruppan, 1975),perch (Pontius &Ambrosius,1972)andpike (M.G.Vos,pers. comm.). Inplaice thisdivisionisless clear,theareaoccupiedbythewhitepulpbeingrelativelysmall (Ellis &deSousa, 1974),whereasincarp (Secombes&Manning,1980)andrainbowtrout,spleenismainly redpulp (Anderson,1974;Grace&Manning, 1980).Thekidneyisanimportant lymphoid organinteleosts.Theexcretion functionofpronephros iscompletely lostinadult fishandtheorganshowsmainlyhaemopoieticandlymphoidcells (Ellis&deSousa 1974). Somesinuses inpronephrosaresurroundedbyendocrine cells (Secombes& Manning, 1980). Lymphoidtissueofmesonephrosissituated inbetweennephrictubules. InMozambiquemouthbroodernoorganized lymphoidtissuewasobservedin mesonephros (Sailendri&Muthukkaruppan, 1975). Furthermore individualorsmall groupsoflymphoidcellsaresituated inbetweenintestinalepithelialcellsas wellasinthelaminapropria (Bullock,1963;Pontius & Ambrosius,1972;Krementz & Chapman,1975;Reiffel&Travill,1977;Zapata,1979a;Davinaetal., 1980).Teleost fish lackbonemarrow,bursaofFabricius andlymphnodes. # I n cartilaginousandbony fishadiscretethymusandspleenarefound. Inbony fishthekidneycontains lymphoidcells.Withtheexceptionofsealampreyand Holosteans,fishlackbonemarrow.The cellularorganizationofthymusand spleenisstronglyspeciesdependent. 16 function of lymphoid organs Afterinjectionofcarpwithasolubleantigen (humangammaglobulin (HGG)), antigentrappingoccurredinspleen,pronephrosandtoalesserdegreeinmesonephros. Usingacellularantigen (Aeromonas salmonieida), mesonephrosplayedamajorpart inantigentrapping.Thymusandliverwerenotinvolvedinthisproces (Secombes& Manning, 1980).Antigenbindingcells (orrosetteformingcells)weredetectedin spleenandpronephrosofrainbowtroutafterimmunizationwithsheepredbloodcells (SRBC) (Chiller,Hodgins,Chambers&Weiser,1969).Unfortunatelymesonephroswas not includedinthisstudy.Electronmicroscopyrevealedthatlymphocytes,blastlikecells,macrophagesandcellsresemblingeosinophilsboundtheantigen.Antigen bindingcellshavealsobeenobservedinpronephrosandspleenofgoldfish,but only lownumberswere foundinthymus (Ruben,Warr,Decker&Marchalonis, 1977; Warr,DeLuca,Decker,Marchalonis&Ruben,1977). Antibodyproducingcellshave beendemonstratedinspleenandpronephrosofbluegill (Smith,Potter&Merchant, 1967), rainbowtrout (Chiller,Hodgins&Weiser,1969;Anderson, 1978),perch, (Pontius&Ambrosius, 1972)andMozambiquemouthbrooder (Sailendri&Muthukkaruppan, 1975). Furthermore antibodyformingcellsweredetectedinthemesonephrosof rainbowtroutandgoldfish (Anderson,1978;Neale&Chavin,1971).Organcultures ofsnapperandgrouperrevealedthatantibodysynthesisoccurrednotonlyinspleen andpronephrosbutalsointhethymus (Ortiz-Muniz&Sigel, 1968,1971).InMozambiquemouthbrooderantibody formingcellswerepresentinthethymus (Sailendri, 1973).Inotherteleost speciesstudied,thymuscontainednoorvery lownumbers ofantibody formingcells.Inliverofrainbowtroutandseveralshark species antibody formingcellsweredetected (Chiller,Hodgins&Weiser,1969;Gitlin, Perricelli&Gitlin, 1973). Ontogenetic studiesinsalmon (Ellis,1977b)andcarp (Grace&Manning, 1980), suggestedthatthespleenisnotvitalforimmunologicalmaturity since lymphocytes ofthymusandkidneycarrysurfaceimmunoglobulinanddisplaymixed leucocytereactionsatatimewhenspleeninonlypresentinarudimentary form. Splenectomy inkillifishdidnotaffectallograft rejection (Goss,1961).Insnapper,splenectomy hadnoeffectontheantibodyresponseagainstbovineserumalbumin (BSA)(Ferren, 1967).Ontheotherhand,thespleenofbluegouramiissupposedtobeamajor lymphoidorgan (Yu,Sarot,Filazzola&Perlmutter, 1970). Adult thymectomyinMozambiquemoutbrooderandsalmonhadnoeffectuponallograftrejection (Sailendri,1973;Botham,Grace&Manning, 1980).Thymectomyin 4monthsoldMozambiquemouthbrooderprolongedsurvivalofallograftsandthymectomy in2monthsoldanimalstotallysuppressedtheanti-SRBCresponse (Sailendri, 1973). Thepronephroshasbeenregardedasaphylogeneticanalogueofbonemarrow (Zapata, 1979b)and/orlymphnode (Ellis, 1977a). # T h e thymusofbony fishmaybelookeduponasaprimarylymphoid organ important forthecontinuousproductionoflymphoidcells.Kidney (pronephrosandmesonephros)canbeconsideredasastemcellcompartment,aprimarylymphoidorgan 17 andaperipheral lymphoidorgan. Itseems that thespleen doesnotplay an important role intheimmune response ofmostbony fish. 18 CHAPTER2 NON-LYMPHOIDDEFENCEMECHANISMS Non-lymphoid cellular defence Phagocytosisofforeignmaterialboth servesasadefencemechanisminitself andasaninitial stepintheonsetofthespecific immuneresponse.Inmammals, mononuclearphagocytesaswellascellsbelongingtothegranulocyteseriesposses phagocyticcapacity. Intheholosteangarstudies in vivo andin vitro showed thatmonocytesand macrophageswerecapabletophagocytizebacteria,yeastandSRBC.These cellsdestroyedtheengulfedmicro-organisms,asrevealedbyelectronmicroscopy. Granulocytes appearedtobeinert in vivo andin vitro uptakeofparticles (McKinney,Smith, Haines&Sigel, 1977).Inplaice,monocytesandthrombocytesweretheonlyphagocytic celltypesinperipheralblood (Ellis,1976;Ferguson,1976b). Macrophagesfoundin pronephros,mesonephros,spleen,thymus,heart,mesentaryandperitonealfluid, consistedofthreetypes:1)freeroundedcellsresemblingmonocytes2)reticuloendothelial (RE)cells liningblood sinusesand3)melano-macrophages.Afterintraperitoneal injectionofcarbonparticles,phagocytosiswasperformedpredominantlyby theellipsoidsofthespleenandthenetworkofREcellsthroughouthaemapoietic tissueofpronephrosandmesonephros (Ellis,Munroe&Roberts,1976). Macrophages liningtheatrialendocardiumwerealsoinvolvedinphagocytosis (Ferguson, 1975). Followingphagocytosis somemacrophagesinpro-andmesonephrosandspleenformed aggregateswithmelano-macrophages (Ellisetal., 1976,M.G.Vos,pers. comm.). Amazingly,granulocyteswerenotphagocyticinplaice (Ellis,1976). Incontrasttothesituationingarandplaice,neutrophilicgranulocytesin rainbow troutandgoldfishhavephagocyticproperties (Finn&Nielsen,1971a, 1971b;Watson,Shechmeister&Jackson,1963;Weinreb&Weinreb,1969). Eosinophilic granulocytesofgoldfishphagocytizebacteria (Watsonetal., 1963;Weinreb&Weinreb, 1969). Similarobservationshavebeenmadeinthecunner (Mackmull&Michels, 1932), carp (Pliszka,1939)andguppy (Jakowska&Nigrelli,1953). Thrombocyteshavebeendescribedtobephagocytic (Yokoyama,1960;Fänge, 1968; Ferguson,1976b). Itremainstobedemonstratedforthesecellsiftheuptakeof foreignmaterialisfollowedbyintracellulardigestion. Thereareanumberofpublicationsdealingwithnaturalorexperimentalinfectionsinfish.Anextensivediscussionofthesereportsfallsbeyondthescopeof thisthesis.Inthiscontextitisonlyworthwhiletomentionthatphagocyticcells are involvedininflammatoryreactions evokedbyviruses (Finn,1970),bacteria Post, 1963)andparasitic infections (Joy&Jones,1973). Insomestudiestheclearanceofcarbonorantigenicmaterialfrombloodwas usedasanindicationforthephagocytizing capacityoftheanimal.Followingintravenousorintramuscular injectionofT 2 bacteriophage intolemonshark,phageparticleswerecompletelyeliminatedfromthecirculationbyday4-5(Sigel,Acton, 19 Evans,Russell,Wells,Painter&Lucas, 1968). Inbrowntroutandcarp,keptatoptimal temperaturesMS2bacteriophageiscleared fromthebloodstreamwithin7days.In theicefish,keptat2°Cthisprocess takes42-56days (O'Neill, 1980).Theeffectof temperatureonnonlymphoid defencewillbediscussedinChapter7. • Phagocytosisinfishisaccomplishedbymononuclear phagocytes.Insome species granulocytesarealso involvedinthisprocess. Non-lymphoid humoral defence Inhighervertebratesanumberofcomponentshavebeendescribedwithapotent anti-bacterial and/oranti-viral activitywhichfunctioninanon-specificway. Although somecomponentsacttotally independentoftheimmune systemothersare activatedbyantibody (e.g.complement). Thefollowing componentspresentinhighervertebrates havebeendescribedfor fish.Theirbiological significanceandtheirrelationtothespecificdefence system,especiallyunder circumstancesweretheimmune systemfunctionspoorly(low temperatures),arelargelyunknownatpresent. a) complement Complementisagroupofserumcomponents involvedinbothspecificandnonspecificdefence.Inmammalsthecomplement systemconsistsofaseriesofatleast 18proteins (including C1-C9)whichcanbeactivated intwoways.Intheclassical pathwaycomplementisactivatedbycontactwiththealteredFcpartofanantibody molecule afterbindingwithanantigen.Inthealternativepathway activationis accomplishedbycontactwithbacterial cellwallpolysaccharides. Complement activity hasbeendemonstrated inserafromallvertebrate classes (Gewürz,Eugster,Muschel, Finstad&Good,1965;Gewürz,Finstad,Muschel&Good,1966;Legier,Evans&Dupree, 1966; Legier,Evans&Dupree,1967;Gigli&Austin,1971;Ross&Jensen, 1973). Fish serainwhich complement activityhasbeendemonstratedareshowninTABLE1. Basicpropertiesofmammaliancomplement (thermolability,requirementofCa , Mg )aresharedbyfishcomplement.However,thetemperature rangeoverwhich complement remains activeisfargreaterforfishes:at4Cperchandcarp complement retainsitshaemolytic activity (Pontius&Ambrosius, 1972;ownobservations). Forheat-inactivationoffishcomplement lowertemperaturesarerequired thanto inactivatemammalian complement (TABLE 1). Asinotherpoikilothermscomplementisinmost casesnotexchangable betweenunrelated fish species.SRBC,sensitizedbyrainbowtrout antibodies,were haemolyzedonlyincombinationwith isologous serum (rainbouwtrout)orwith serum fromclosely related speciesascohosalmon,sockeye salmonandchinook salmon (Chiller,Hodgins&Weiser, 1966).ForSRBC,sensitizedwithbluegillantibodies, blue gill,pumpkin seedandwhiteperchserumareeffective complement sources (Smith,Potter&Merchant, 1967). Rosybarbandrainbow trout serumaresuitable complement sourcesforSRBCsensitizedwithrosybarb antibodies (Rijkers& 20 CO 1 60 S —' CN vO CN c o o P. raIJ CC • o\ /-s —— B o 4-1 rH CO 4-1 CU CO U c o C ra(3 e 4J •H o u eu CU 4-1 < H Q •r-4 m ra i •H CO 4J > ra u 0 4J O •I-I "-) ' H CU U •r4 60 ^ Pi r-l 60 «H mo ra ^.«^^ o > CJ •r4 4-1 > o a M °a S 4-1 CtJ tu U < 4-1 CO c o tn — O co r^ o 6 0 CTi Ö •H — J= _ en ti ra 4-t B o S oco c eu CO t_> > ra u Cd U U CU CJO 33 ra ^ M u CO 3 CO -* -aC x> CN CN V V ^ CU -~N .««• I O O O en c/) eu g -« ö ft, S os -u e •3 o CS ö i« raS es +i CO o to ft. U 60 CO ra .e o w ij cu O co S hl ia o 33 O s co H C3 ö s Co s ö s Ö CO s. C3 o • ... •H 4-1 ,-! ^ ra CN ra r^ > 4-J C3> •H eu — 4J O ^ ra pu J3 <« 3 3 Q -° eu to r-4 3 60 T J > • eu co U < J o H U ...o ^ .g CU W CN g 4-1 > , . . •r-l Xi ^ N ° 8 4-1 O C r s co 4J O C3> 3 C -H — -H eu 4J ^ 4J era eu > w iX 32 H 33 O M Pä p CO c ra e co S "* ft, ^ ft, +5 U co Ri f, 3 s o rara co O O g S fel « co a. s 5a -» SN s c • o i-l -H rH P-l o. -u ra eu o Pd EJ SS o 33 <_) W H t/3 O -1 O 33 o m w H ,-N O co 4J r~ O C eu •H .* Il >Ï.-N VJ CO OO OCU O CO L04-J <J\ 3 3 14-1 ^ — u ra — ^ 21 VanMuiswinkel,1977). InthehaemolyticplaqueassayusingSRBCand immunecarp cells,seraofcarp,bream,barbel,chub andnasewere capableofbringingabout haemolysis (Rijkers,Frederix-WoIters&VanMuiswinkel,1980a). Itappearsthat isologousserumorserumfromcloselyrelated speciesiseffectiveascomplement source inthehaemolyticplaqueassay.However,intheplaqueassayofrosybarb, serumfrompurple-headedbarb,black-spotbarbandspannerbarbdonotdisplaycomplementactivity (Rijkers&VanMuiswinkel,1977). Intheplaqueassayofcarp,serum ofgoldfishisineffective (Rijkersetal.,1980a). Itisthereforeunlikelythat functional interchangabilityofcomplementcanbeusedasataxonomicalcriterium. Fishcomplement ispresentnotonly inserum. Inrainbowtroutaheatlabile anti-Vibrio activitywasobserved inmucus,presumablycomplement+antibody (Harrell, Etlinger &Hodgins, 1976). Onlyfewdataexistonisolatedcomponentsoffishcomplement.Ross&Jensen (1973b)haveisolatedandpurified thefirstcomponent (C1n)ofthecomplementsystem ofnurse shark.C1nwas incompatiblewithrabbit immunoglobulinbutformedanintermediatecomplexwithsheeperythrocytessensitizedwithnursesharkantibody.These intermediatescouldbespecifically lysedwithguineapigserumdevoidof C1.Onthe otherhand,wholeguineapigcomplementdidnotreactwithSRBCsensitizedwithshark antibody. Itwasconcluded thatthefirstcomponentofsharkcomplementcaninitiate thecascadereactionofthemammaliancomplement systemprovidedthat itisallowed toreactwithanimmunecomplexcontainingacompatibleantibody (Ross&Jensen, 1973a). InadditionGigli&Austen (1971)havedemonstrated thepresenceofC9in nursesharkserumwhichreactedwiththecellular intermediateEAC 14235678prepared withguineapigserum. Cobravenomfactor (CVF)depletestheterminalcomplementcomponentsbyactivatingthecomplement sequenceatC3.ThecomplementactivatingeffectofCVFrequires thecooperationofthealternativepathway system.Thisalternativecomplementactivitywaspresentinhagfishserumand inhemolymphofhorseshoecrab (Limulus polyphemus) andinsipunculidworm (Golfingea sp.) butabsentin lamprey,nurseshark,paddlefish andcarpsera (Day,Gewürz,Johannsen,Finstad &Good, 1970). Classicalcomplement activitywasnotobserved inhagfish,lamprey,horseshoe,crabandsipunculidworm. Thesefindingssuggestthattheterminalcomponentsofthecomplementsystem,which canbeactivatedwithoutantibody,appeared earlyduringevolution.A complement system,which requires antibody-mediated activationisonly foundinthevertebrates were immunoglobulinhasbeendemonstrated. b) Lysozyme Lysozyme,anenzymwithbacteriolyticproperties,ispresent inserum,mucus andphagocyticcellsofmanyfishspecies (Luk'yanenko,196S;Fletcher &Grant,1968; Fletcher &White,1973b;Ourth,1980). Themolecularweight (15x 10)issimilarto mammalianlysozyme.Thedifferentelectroporeticmobilityreflectsdifferencesin aminoacidcomposition (Fletcher&White, 1973b). 22 Variationsinlysozyme activitybetween individualmemberswithinonespecies areconsiderable.Ingeneral,serum lysozyme activityincarnivorous fishes likepike andperchishigher thaninomnivorous species likecarp (Luk'yanenko, 1965). After immunizationofcarpwith Aeromonas punctata thehighest lysozomeactivity coincides withtheserumantibodypeak (Vladimirov, 1972). Using immunohistochemicaltechniques,lysozymeactivity couldbedemonstrated inmonocytesandneutrophils (Murray&Fletcher, 1976). These celltypesprobably contributetotheserum lysozyme activity sincethenumberofmonocytesandneutrophils increases concommitantlywith serum lysozome levelsafter intravenous injectionof latexbeads (Fletcher&White, 1973b). [ a) Interferon Interferonisasubstanceproduced duringviral infectionsinordertoincrease cellresistancetodifferent typesofviruses.Theantiviral actionofinterferonis species specific,i.e.mouse interferondoesnotpreventvirusreplication inhuman cell lines.Infish,interferonproductionhasbeendemonstrated both in vivo and in vitro. Virus haemorrhagic septicemia (VHS)isadisease causedbyarhabdovirus (Egtved virus). Inrainbowtroutthedisease occursmainlyatwater temperaturesof 6-12C anddisappears spontaneouslyattemperatures over 14-15C.Following injectionofrainbow troutkeptat15CwithEgtvedvirus,serumwascollected after3,9 and 14days.Theantiviral activityofthese seratested in vitro wasmaximalonday 3.Thiswasshownbyprotectionofrainbow trout gonad cells against challengewith Egtvedvirus,butalsotoinfectioushaemopoieticnecrosis (IHN)virusorinfectious pancreaticnecrosis (IPN)virus.Thisbroad antiviral activityisspecies specific sincefatheadminnow (FHM)cellsarenotprotected aftertreatmentwiththis serum againstthevirus challenge.Thearguments fortheinterferonnatureoftheserum factorwere enforcedsinceitappearedtobenon-sedimentable,non-dialysable,heat andlowpHstable,trypsin labileandRNase resistant (deKinkelin&Dorson, 1973). Rainbow troutandbrown troutinjectedwith rhabdovirus strain 23.75synthesize interferonwithmaximumtitres reachedwithin2days.Theinterferonsynthesispreceedsthe neutralizing activityduetospecific antibody (deKinkelin,Baudouy&LeBerre, 1977). AttemptstoinfectFHMcellswithreovirus type2werenotsuccesful.FHMcells exposedtothisvirusdeveloped resistanceandproducedanantiviral substance which appearedtobeinterferon (Oie&Loh, 1969). GFA,avirus-like component,iscapable of inducing interferon synthesisinacell lineofthebluestriped grunt (Beasly, Sigel&Clem, 1966). d) C-reaotive protein C-reactive protein (CRP)isaproteinwhich appearsinmammalian serumduring theacutephaseofinfectionwithmicro-organisms.CRPbindstophosphoryl choline residueswhicharepresentincellivallglycopeptidesofvariousbacteria,fungiand 23 parasites.CRPcancause agglutination,precipitationandcomplement activation (Siegel,Rent&Gewürz,1974;Pepys,Balz,Mussalam&Doenhoff, 1980). A serumcomponentwithCRPpropertieshasbeendescribedforplaice, dab, cod, flounderanddogfish (Baldo&Fletcher, 1973;Pepys,Dash,Fletcher,Richardson,Munn & Feinstein, 1978).CRPprecipitated aqueous extracts frombacteria,fungiand nematodes.Theprecipitation reactioncouldbeinhibitedbyphosphoryl choline. Immunoelectrophoresis revealedaprecipitation lineinthecu-region,excludingthe possibilityofanimmunoglobulinnaturebecause antibodyactivitywasrestrictedto the ß-regionintheirexperiments (Baldo&Fletcher, 1973).AccordingtoPepysetal. (1978)CRPofplaice,flounderanddogfish closelyresemblehumanCRPinmolecular 3 weight (135-160x10)andE.M.morphology (twopentameric discs). Incontrasttomammals,CRPinplaiceisnotanacutephaseproteinbuta normal serumconstituentwhichmayprovidetheanimalwithapermanent defence line against invadingmicro-organisms. e) Natural hemagglutinins Inrepresentatives fromallclassesoffish,naturalagglutininshavebeen detected. Theiractivityisusually directed againstxenogeneicerythrocytes,more precisely towards carbohydratemoietiesonsurfacemembranes. Thisnatural agglutinins sharethefollowingpropertieswhich distinguish themfrom immunoglobulins: 1) theyarecomposedofidentical subunits,sonodistinctionbetweenheavyand lightchainscanbemade. 2) nointerchaindisulfidebridgesoccur,themoleculeislinkedbynoncovalent bonds. 3) uponelectrophoresisnoheterogeneity inaminoacid compositionofthesubunits isdisplayed. Aproteinwithagglutinating activitytohumanerythrocyte "0"antigenshasbeen demonstrated inlamprey serum (Litman,Frommel,Finstad,Howell,Pollara&Good, 1970b).Themoleculewhich consistedof4non-covalentlinkedsubunits (M.W.90.000) dissociated spontaneously. Inaddition,thecirculardichroic (CD)spectraandelectrophoreticmobility differedmarkedly fromIg. Innon-immune lamprey seruma48Sproteinwasobservedwith agglutinating activitytohorseerythrocytes (Marchalonis&Edelman, 1968b).Themoleculeiscomposedoflowmolecularweightsubunits linkedbynoncovalentbonds.Ca requirement andaminoacid compositionoftheproteinresembled natural invertebrate hemagglutinin illustratingtheevolutionary positionofAgnathabetween invertebratesand vertebrates. Innormaleelserumanagglutininisfoundwhichreacts specificallywith human O-erythrocytes (Springer&Desai,1970).Theagglutinin appearedtobeaproteinwith amolecularweightof123.000 (7.2S ) ,butwithout significant amountsofcarbohydrate characteristic forimmunoglobulin (Desai&Springer, 1972).Themolecule consistsof 24 CU o e <u u o (IJ 4 J B co • H .Q M-l O h tu co •s« " • •ri •* tu r - l CU O 3 G CU TJ + o9 •rt r-l + tO C <u o O T3 4 J co U -ri <! H CO tj H 3 01 p. co cö e -ö S-ä ca C •H S o 0 •o e tu - ^ r-l 60 p. 1 CO ^-v UJ m u u co p. co r-l ÖO •U C co c; 01 a eu •o 3 3 r-l 60 «. P. P. CO 0) 3 r-l 60 60 Ô. P. C0 C0 co a_ co •n co tu eu — / \ . . o -a- — :o H C0 CO 4J co u eu g c H a C0 i u O 18 ,P H H U K tO r N m oc 3 00 3 A! 60 Ö C •H M C eu !-3 ^ s -3- 00 o J: c r-- en 60 a\ vO •— l-l 4J o o co cd u S • H v£> 0 0 3 M-c ja e 3 0 r— •ri CO CJ o o o o o o CO o ri X <t vO •n O •o . ta ö -u tu o c H 01 (-1 X ö CO C C 60 C0 CU ' H C •H fu CCI • H iJ a. tu co 4J =3 0 0 co O U II O CN en c C..O P. O CO 0 0 i-l >o O Ol tri y - i • H S-N • C) C O 00 O c co •l-l • -3- — u tu e . . » ta a eo oo tu a o p. o o o s o o o H C) H CM o o v o i - i r-~ C 0 > 01 O l co — - O — co ia O 3 o» co en M 4-1 * H e u-i eo C •O O o •H II r-l r-i as cO Pu u en o C h »a M tu c 60 60 CU J3 ci) tu H n z 8 CU- u co J= 3 co • H •o C CU ' H C0 H e CM en M O •<J u 3 4J id ^ 1^ A 8 co o 3 e co 5= •J Vs ö> +i S to 0 e» o ft, en p—i ^ ^ •J PU s s O •8 "g CO ö CU U> a <* cl ö ?4 •ri •^ O S. u s> Ö 01 cu £> ü CJ CO •r- s S u « H s ft. r-i H •H -S CO r - S Ri C 0) e? C0 ÊQ <» SH U o CU t o 4J eo co ta >*fr o O Xi o tu Û , 0 û, X •s § to •r i IH H E o -^ .C k5 u tu t - J CO 3 >1 C0 CJ 1 to c r. Ö Pu ri tll NI c • rHi <n — J3 en sa 1 M W H Bi ,*M tO .fi co tu co u 3 C C3> * H CT« ^ ' r-l C0 1-1 O CO * H > eu U J rH 4J tu eu »s 611 Ci _ • H en CJ -l 0 reu CJ •VI o -u °8 J3 611 S to ^to Ö ?H t» •- 60 T3 • H 'r-l CU O o •ti CJ T~S E 4J Ö CS) J3 . * CO ft, •M co to tfl eu <J\ « CN •« eo vp eu P - s •g Ö O S - ~ P. co r^ en u eu 6 0 • « Il eo <U O ,--^ r-* o n CNI e ^ oo w ^.S co <D '-3, a3 CU 3 , - * f-H O 6C e II S S II c a y—\ tu v£> 60 CO — 3 t) C en <r t ) r- Q 3 i-H r - s 0\ 60 O — —S 25 3 subunits,eachsubunitcomposedof4identicalpolypeptide chains,joinedbydisulfidebridges.CDspectraofthismolecule differsignificantly from thoseofhuman 7Simmunoglobulin (Jirgensons,Springer &Desai, 1970J. Inrainbowtroutnaturalhemagglutinins againstrabbit,mouseandhumanerythrocyteswerepresent.Whereas induced antibodieswerealwayselutedwith the first high molecularweightpeak fromaSephadexG-200column,naturalhemagglutininswere eluted inthefirstand thirdproteinpeak. Induced antibodieswereprecipitable by 221Na ? S0,andwere ß-globulinsinImmunoelectrophoresis,naturalhemagglutininswere nonprecipitable by 221Na^SO.andwere faster than0-globulins (Hodgins,Weiser & Ridgway, 1967).Moreover,sucha lowmolecularweightagglutinin similar tothe natural agglutininivasnot inducedafterexposure tovariousantigens (Hodgins, Wendung,Braaten&Weiser, 1973). Innurse shark serumaproteinwasfoundwhich specificallyprecipitates fructosans.Thisprotein (FSP)was antigenicallyunrelated toshark immunoglobulin (Harisdangkul,Kabat,McDonough &Sigel, 1972a). Themolecularweightwas 280,500 (10.6S)anditconsisted of4noncovalent linked subunits.Nocarbohydratewasdetected (Harisdangkul,Kabat,McDonough &Sigel, 1972b). CD spectraofpurified FSPfromnurse sharkresembledmore closely tophytohemagglutininorconcanavalinA thantovertebrate immunoglobulin (Pflunm,WangS Edelmann, 1971). InTABLE 2somecharacteristics ofagglutinins fromplant,invertebrates and vertebrateoriginaregiven.Natural occuringhemagglutinins ininvertebrates are largemolecularweightproteinswithanelectrophoreticmobilitysimilartothatof immunoglobulins (Marchalonis, 1977). Inthemajority ofinvertebrate species,hemagglutininspossessanopsonicactivity,indicating arole inthedefencesystem (Acton &Weinheimer, 1974).Thebiological significance ofagglutinins ofplantoriginis notclear. # A numberofhumoral defence factorshavebeenobserved infish:complement, lysozyme,interferonandC-reactive protein. Ingeneral theyresemble their mammaliancounterparts infunctional andphysiochemicalcharacteristics.Furthermore,non-antibody hemagglutinins arepresent infish serumwhich resemble invertebrate agglutinins. 26 CHAPTER3 IMMUNOGLOBULINS AccordingtotheWorldHealthOrganization immunoglobulins (Ig's)arethose proteinsofanimaloriginwithknownantibodyactivityandcertainproteins related toantibodybychemical structure.Inmanfiveclassesofserum Ig'sarefound,as illustratedinTABLE3.Allthese immunoglobulin classesareserologically related because theysharethesame lightchains.Twoantigenically different types,of lightchains,termed K or X,arefoundinallclasses.Theheavychainsdefinethe immunoglobulinclasses.Heavy chains,whichdifferinavarietyofproperties, includingmolecularweight (M.W.)andaminoacid sequence,havebeengiventhedesignations:u, y ,a, 5andE .Themolecular formulaofIgM (L?u7)5 indicates that5 sub-units,eachcomposedof2lightand2heavychains,arelinked together. TABLE 3 Characteristics ofimmunoglobulinclasses inman Class S„ IgM 18-20 IgG 6.7 IgA 7-11 IgD 6.2-6.8 IgE 8.2 20 3 Molecularweight (xlO) Native H-chain L-chain Carbohydrate content(%) Formula a 2 u 2 )5* 950 70 22.5 150 53 22.5 2 150-400 64 22.5 6-10 180 60 22.5 12.7 L 262 190 72.5 22.5 11.7 L 2E2 9-12 L2Y2 a2c*2)n S„ n =sedimentationcoefficient;H-chain=heavy chain;L-chain =lightchain; L canbeXor K; ncanbe 1,2orhigher. DatafromMarchalonis (1977). Twomajorpropertiesbywhichproteinscanberesolvedareelectric chargeand molecularweight.Upon zoneelectrophoresisinstarchblocksatpH8.6mammalian immunoglobulinsmigratetothecathodeandwereoriginally termed Y~gl°bulins.From early studiesitwasconcluded thatfish lacked immunoglobulins becausey-globulins werenotdetectedinserum (Engle,Woods,Paulsen&Pert,1958;Good&Papermaster, 1961;Clem&Sigel,1963;Post, 1966). This conclusionturnedouttobeincorrect sincecarpandplaice immunoglobulinforinstancemigrateasß-globulins (Ambrosius, 1966;Baldo&Fletcher, 1973).Ontheotherhand,proteinswhichmigrateasy globulinsdonotnecessaryrepresent immunoglobulins:transferrinandC-reactive proteinmigratealsoasy-globulins (seealsoChapter 2). Thereforereportsinwhich thepresenceorabsenceofimmunoglobulinisbaseduponelectrophoresis aloneshould be interpretedwithgreatcare. 27 Immunoglobulin of Agnatha Onbaseofthefailureofdetectingcirculatingantibodyafterimmunization withBSAandtheabsenceofserumglobulinuponImmunoelectrophoresis,Good&Papermaster (1961)concludedthatPacifichagfishlackanimmuneresponse.Whenusing otherantigens (heat-killed Brucella abortus, typhoid-paratyphoidvaccine,hemo- cyanin,bacteriophageT,)withorwithoutcompleteFreund'sadjuvant,noagglutinating,complement-fixing,neutralizingorantigenbindingantibodies couldbe detected (Papermaster,Condie&Good,1962;Good&Papermaster,1964).Thecausefor thisfailureinelicitingantibodyresponsesprobablyliesinpooranimalhusbandry (lowwatertemperatures,starvation)especiallysincelaterstudieshaveshownthat hagfisharecapableofmountingahumoral immuneresponse.Afterimmunizationof hagfishwithkeyholelimpethemocyanin (KLH)theproductionofspecificantibodies couldbedemonstratedbypassivehaemagglutinationandimmunodiffusioninagargels (Thoenes&Hildemann,1969).Fractionationofimmuneserumshowedtheantibodiesto bepresentinthemacroglobulinfraction (28S).A smallercomponent (7S)whichlacked antibodyactivitywasantigenically identicalwiththe28Scomponent.The28ScomponentwasthoughttobeIgM (possiblyadimerof19Smolecules)whilethe7ScomponentrepresentedmonomericIgM (Thoenes&Hildemann, 1969). NaturaloccurringagglutininsforSRBCwereheatlabilesincehagfishserum heatedat56Cfor30minlostallactivity.Antibodies inducedafterrepeated immunizationwithSRBCwereheatstable (Linthicium&Hildemann,1970). MorerecentlyRaison,Hull&Hildemann (1978a)succeeded inraisingspecific antibodiesagainstgroupAstreptococcal carbohydrate inhagfish.Gelfiltrationand sodiumdodecylsulfate/polyacrylamidegelelectrophoresisundernon-reducingconditions indicatedthattheintact immunoglobulinhadamolecularweightofapproximately 160,000.Theelectrophoreticmobilityofheavychainswasidenticalwiththat ofmurine v chains.Thetertiarystructureofhagfish immunoglobulinwasverylabile (completedissociation in0.005M 2-mercaptoethanol)suggestingtheabsenceof disulfidebondingofthepolypeptidechains (Raison,Hull&Hildemann, 1978b).The hexosecontentofhagfishimmunoglobulin is3.41 (W/W) (Hildemann,cited inLitman, 1977). Uponrepeatedimmunizationthesealampreyiscapableofproducingneutralizing antibodiestobacteriophage f2.Theantibodyactivityislocalized in6.6S and14S fractionsofimmunelampreyserum.The6.6S and 14Sfractionswereantigenically identical.Theyieldof14Smaterialwasinsufficientforfurthercharacterization. The6.6Smoleculecontainedheavy (H)andlight (L)chainswithamolecularweightof 70,000and22,000respectively.LampreyHchainsresembledmurineychainsinmolecular weightandelectrophoreticmobility.HandLchainswerenotcovalentlylinkedand dissociated spontaneously (Marchalonis&Edelman,1968b).Thereforethemolecular weightoftheintactimmunoglobulin (180,000)couldonlybeestimated (Marchalonis& Cone, 1973). 28 Stimulation ofsea lampreywithhemocyaninorBSAdidnot evokeproductionof circulating antibody,whilehighdoses Brucella induced anantibodyresponse (Pollara, Finstad &Good, 1966). Theantibodies (9S)hadamolecular weightof 150,000-200,000 and showedupon Immunoelectrophoresis anaglobulinarc.Theproteinwith y mobility lacked antibodyactivity (Finstad &Good, 1964;Pollara,Finstad,Good &Bridges, 1966).When lampreywas immunizedwithhuman"0"erythrocytes,antibody production wasdemonstrated (Pollara,Litman,Finstad,Howell &Good, 1970). These antibodies were associatedwith the9Sserum fraction.Uponelectrophoresis antibody activity resided intheanodalmigrating fractionwith achargedensitycharacteristic foran a globulinrather thanayglobulin (Good,Finstad &Litman, 1972).A molecular weightof320,000wasobtained for thepurified immunoglobulin (Litman,Howell, Finstad,Good &Pollara, 1969). Thenativemolecule spontaneously dissociates into antigenically identical subunits ofapproximately 150,000and 75,000M.W.After reductionandalkylationno counterparts ofheavy andlightchainswereobtained but subunitswithaM.W. of90,000. Itwas suggested thatthenatural formof lamprey immunoglobulin isrepresentedbyatetramercomprised of4equivalent subunits held togetherbynoncovalentbonds (Litman,Frommel,Finstad,Howell,Pollara &Good, 1970b). • Studies onimmunoglobulins inAgnatharesultinconflicting conclusionsregardingstructural conformations.According toMarchalonis lamprey immunoglobulin iscomprised ofheavy and light chains (Marchalonis &Edelman, 1968b)while Litmansuggests thatthemolecule contains identical subunits (Litmanet al., 1970b). Thisdisagreement canbeexplained byconsidering thenatureof the antigensused for immunization.The immunoglobulinsofMarchalonis &Edelman (1968b)were inducedbyviralproteinantigenswhile Litmanetal. (1970b)may havecharacterized an inducible classofantibody tocell surface carbohydrate. Naturalagglutinins toxenogeneic erythrocytes havebeendescribed for lower vertebrates (seealsoChapter 2).Thenatural occurring agglutinin forSRBCinhagfishwasalreadymentioned (Linthicium&Hildemann, 1970). Serafromthearctic lamprey contained natural agglutininswhichreactedwithvariousvertebrateerythrocytes.Antibodies induced afterrepeated immunizationwithSRBCwereheat stableanddisplayed ahighdegreeofspecificity forSRBC,whereasnatural agglutinins lost theiractivityafterheating serumat46°Cfor30min. (Fujii,Nakagawa &Murakawa, 1979b). Normal sealamprey serumhasbeenshowntocontainnatural agglutinating activity forSRBC (Gewürz,Finstad,Muschel &Good, 1966). Thisactivitywasblocked byEDTAandwasnot stimulated by immunization.Marchalonis &Edelman (1968b)described a natural agglutinating activity towardshorseerythrocytes insealampreywhich resided inthe48Sserumfraction. ©Natural agglutinins canbefunctional distinguished frominducibleantibodiesby theirheat stability.Aphysiochemicalcomparison reveals thatnatural agglutininsresemblemore invertebrate agglutinins thanvertebrate immunoglobulins. 29 (TABLE 2).ThelampreyantibodydescribedbyLitmanetal. (1970b)mayrepresent aninducibleformofnaturalagglutinins.Asfarastheirimmunecapacityis concernedAgnathamightrepresentanintermediatebetweeninvertebratesand vertebrates,possessingdefencesystemcharacteristicsofbothgroups. Immunoglobulin of Chondvichthyes After immunizationofleopard sharkwithbacteriophageT 2 antibodyactivityis presentinthe17Smacroglobulinserumfraction.Lateantiseracontained antibody activityinthe7Sfractionalso (Suran,Tarail&Papermaster, 1967).Theimmunoglobulinfractionscouldbepurified fromshark serumbygelfiltrationandion exchangechromatography (Clem&Small,1967).The7Sand17Simmunoglobulins appeared tobeidenticalinimmunodiffusionusingrabbitantisharkserum (Suranetal., 1967). Afterextensive reductionandalkylationfollowedbygelfiltrationin5MguanidineHC1both immunoglobulinscouldbeseparatedinHandL-chains.Hchainsof7Sand19S wereindistinguishablebyfingerprintsoftrypticdigests,disc electrophoretic patterns,antigenicpropertiesandmolecularweight (77,000).TheMWofsharkH chainsiscomparabletomammalianuchain.BysimilarcriteriaLchainswereidenticaltoeachotherbutdifferent fromHchains.HandLchains accountforabout75 and 25%respectivelyofthemassoftheimmunoglobulinmolecule.BasedupontheM.W. ofthenative immunoglobulinmolecule,thepolypeptidechainsandthemassratiosof thesechainsshark7Simmunoglobuliniscomposedof2Hand2Lchains.The17Smolecule consistsofapentamerofdisulfide-linked subunits,eachsubunitbeingcomposedof 211and2Lchains (Clem&Leslie,1966). PropertiesofotherChondrichthyesarelisted inTABLE4.Allthesespeciespossesspentamericaswellasmonomericimmunoglobulin. Thepentamericnatureofthe17Simmunoglobulinhasbeenconfirmedbyelectronmicroscopy.Dogfish17Simmunoglobulinshowedafivebranchedcyclicsymetryanddimensions similartomammalianIgM (Feinstein&Munn, 1969). Interrelationshipbetween7Sand17Smolecules -Newbornnursesharkhaveessentialnoserum immunoglobulin.Duringfurtherdevelopmentthesynthesisof17SIgpreceeds7SIgsynthesis (Fidler,Clem&small, 1969). -The18Santibodyto Salmonella typhirrwœiwn 0antigenis150-200timesmoreefficient inagglutinationreactionsthan7Santibody (Schulkind,Robins&Clem, 1969). -Antibodyactivityduringthefirst 10-12monthsafter immunizationwith Salmonella typhimvœium wasrestrictedto17Simmunoglobulin.Notuntil1yearafterimmunizationantibodyactivitywasobservedin7Simmunoglobulin (Clem&Leslie, 1966). -Administrationofradiolabeled7Sand17Simmunoglobulinhasdemonstrated that7S IgMisneitheraprecursernoradegradationproductof17SIgM. Thehalflifeoflemonsharkimmunoglobulinwas4-5days.Furthermoreitwasdemonstratedthat 17SIgMispredominantly intravascularwhereas7SIgMisdistributed bothextravascularlyandintravascularly (Clem,Klapper&Small,1969;Small, Klapper&Clem, 1970). 30 OnbaseofthesedataClem&Leslie (1969)concludedthatthetwomolecular formsof shark IgMfunctionallymimicmammalian IgMandIgGmolecules. An interesting exceptiontothepentamericIgMfoundinmost Chondrichthyes istheimmunoglobulinmoleculeofstingray.HandLchainsaresimilartomammalianu and lightchainsinmolecularweightandamino acidcompositions,butthemolecular TABLE4 Physicochemicalpropertiesofcartilaginousandbony fish immunoglobulin d a a s andspecies Molecular weight (x!0 ) Native H-chain L-chain Carbohydrate Formula content 7. CHONDRICHTHYES horned shark 19 7 900 180 69 69 23 23 9.3 11.3 a2u2)5 cam's) 17 7 982 198 72 73 20 21 8.7 7.6 «•2U2>5 breuiroatria) 19 7 850 160 71 71 23 23 3.7 3.5 (HetepodontitB smooth dogfish fvaneisci) (Muetelua (Negaprion lenra sherk leopard shark scmfaaciata) 17 7 77 77 (Gir.nlino3iorr,a cirvat:*!",) 19 7 70 70 22 22 72 22 70 23 (Triakia nurse sha?:k 2P2 a2p2)5 L 2U2 1 1 2,3 2,3 4 4 5,6 5,6 3.5 3.6 s t i n g ray {Daeictie rentrcura) II southern ray (Dasiatia amencona) 17 (Polyeder. upat''!uLi) 14 662 58 21 6.8 (Polyodcn spathula) 59 870 180 75 75 24 24 9.0 8.1 70 24 10.7 52 24 9.1 360 L 9.3 V2>5 L W 2 2 7 7 a2u2)2 8 a 9 2u2>5 CH0NDR0STEAN5 padaiefish a2*2>4 a2u2>4 L2P2 10 II II HOLÛ5ÎEAKS bovfin (Amia calva) 14 600-900 6 gar (Lepiaoateua platyrkimua) (LepiBOBteuB oeaeus) 14 650 70 22 14 610 58 23 (L (L 4.9 2 y4 L2P2 2"2 ) 4 a2p2)2 12,13 12,13 14,15 16,17,18 TELEOSTS carp goldfish catfish grouper rainbow trout brown trout coho salmon margate plaice pike (CyprinuB earrio) 15 720 71 24 (CyprinuB oai^pio) 14 608 77 24 anratuß) 16 76 23 punctatuB) 14 610 70 ztaria) 16 6 900 120 nairdneri) 16 (Caraaaiue (IctaluruB (PpinspheluB (Salmo <L2*2>4 6.8 a2x2>4 23 5.5 a2u2)4 70 40 22 22 3.5 I.I 70 22 19 670 kiautah) 17 756 75 26 (Haermlon album) 15 7 900 180 70 70 22 22 70 22 8.8 60 23 9.2 (Pleuronectee (Eeox plateaBa) 12 luaiua) 15 638-651 16,24 25,26 25,26 27 28 17 (OnoorhynohuB <^2>4 * ab'2 a2P2)4 trutta) (Salmo 19,20 21,22,23 L < 2"2>* 29 30 30 31 <V2>4 32,33 S__ •sedimentation coefficient, H-chain-heavy chain; L-chain•light chain. 1)Frommel, Litman, Finstad &Good (1971); 27Marchalonis 4Edelman (1965); 3)MarchalonisSEdelman (1966); 4)Clem«Small (1967); 5)Suran, Tarail t Papermaster (1967);6)Litman, Frommel, Chartrand, Finstad «Good (197le); 7)Clem, DeBoutaud 5Sigel (1967); 8)Marchalonis «Schonfeld (1970);9)Johnston, Acton,Weinheimer, Niedermeier, Evans, Shelton S Bennett (1971); 10)Acton, Heinheimer, Dupree, Russell,Wolcott, Evans, Schrohenloher S Bennett (1971d); II)Pollara, Suran, Finstad I Good (1968); 12)Litman, Frommel, Finstad SGood ( I 9 7 U ) ; 13)Litman, Frommel, Finstad S Good (1971b); 14)Bradshav, Clem SSigel (1969); 15) Bradshaw, ClemaSigel (1971); 16)Acton, Weinheimer, Hall,Niedermeier, Shelton 5Bennett (1971b); 17)Acton, Evans, Weinheimer, Dupree1Bennett (1970); 18)Acton,Weinheimer, Dupree, Evans «Bennett (1971c); 19) Marchalonis (1971); 20)Shelton« Smith (1970); 21)Ambrosius, Richter Ä König (1967); 22)Richter, Frenzel, Hädge, Kopperschlager Ä Ambrosius (1973); 23)Andreas,Richter, Hädge&Ambrosius (1975); 24)Hall,Evans,Dupree, Acton, Weinheimer &Bennett (1973); 25)Clem& Small (lr,70); 26)Clem (1971); 27)Dorson (1972); 28)IngramSAlexander (1979); 29)Cisar SFryer (1974); 30)Clem S Leslie (1969);3 D Fletcher t Grant (1969); 32)Clerx (1978); 33)Clerx, Castel,BolSGervig (1980). 31 « cN tn s + c+ O o >, • * Ö •H o; S m m r-» (T. —" Tl C .* « o -O C ^-s m u~t £d o in o r-» O ON » to c B ^i eu eu B ao t-i H m 33 ^j * aj en ,c 3 O tO I-H > - to B J= i-H .0 a. oo o o •4 3 H 34 S «H ,-) highnegative charge.Using this isolationtechnique,Jchainanalogueshavebeen demonstratedinnurseshark (Klapper&Clem, 1972;McCumber&Clem, 1976), leopard shark (Klaus,Halpern,Koshland&Goodman,1971;Weinheimer,Mestecky&Acton, 1971) andchannelcatfish (Weinheimeretal., 1971;Mestecky,Kulhavy,Schrohenloher, Tomana&Wright,1975a,b ) .Thephysiochemical characteristicsoffishJchain arecomparedwithhumanJchaininTABLE5.Jchainisanevolutionary conservative protein sincerabbitantiseratohumanJchainalsoreactwithdogfishandleopard sharkJchain (Koshland, 1975). J chainsprobablyplayanimportantroleintheassemblyofIgMandIgAmonomers intopolymers (Kownatzki,1973).Jchainshowever,arenotalwaysessentialforpolymerassemblyasillustratedbytheapparentabsenceofJchaininpolymericIgMof gar (Mesteckyetal., 1975),paddlefish (Weinheimeretal., 1971),pike (Clerx, 1978) andcarp (Zikan,1974).Moreover,mildlyreducedhighmolecularweight immunoglobulin ofcarp,which lacks Jchain,canreassociate in vitvo intonativemolecules (Richter &Ambrosius,1978). %Inbony fishpentamericortetramericimmunoglobulinisfound.Physicochemical characteristicsoffishimmunoglobulin closelyresemblemammalianIgM. Specificity and affinity Goldfishanti-BSAantibodies showedthesamedegreeofspecificitytowardsthe antigenasrabbitanti-BSAantibodies (Everhardt&Shefner, 1966). Studiesonantigen-combining sitesrequirewelldefined antigenicdeterminants. Dinitrophenol (DNP)isasuitablemoleculeforthispurpose.Inmammalstheaffinity ofantibodies increasesduringtheimmuneresponse.ThisphenomenoniscalledmaturationandholdstrueforIgGbutforIgMthisisquestionable (discussedinFiebig, Hörnig,Scherbaum&Ambrosius, 1979). NursesharksimmunizedwithDNPsubstitutedKLHproducebothHWMandLMWantiDNPantibodies (Voss,Russell&Sigel, 1969). GiantgrouperrespondtoDNPbythe productionofHWMandLMWantibodies (Clem&Small,1968,1970). Inboth experiments antibodieswithahighaffinity (K = 1 0 - 5 x 1 0 M )andlowaffinity 4-1 ° (K = 1 0 M )wereproduced.Anincreaseinaffinitywasneverobserved. AntibodiesproducedbycarpimmunizedwithDNPconjugatedtohumanserumalbumin (DNP-HSA),possessed4measurablecombining sitespermolecule.Theintrinsic affinity(K)tothemonovalenthaptenDNP-L-lysinevariedfrom1 0 M -2.5x10M . Duringtheinitialphaseoftheimmuneresponsetheaffinitydoubledbutoverthefollowing25monthsperioditremained constant (Fiebig&Ambrosius,1975,1977).The functionalaffinity (KJ oftheanti-DNPantibodiesforthemultivalenthaptenDNP-T. 3 7 bacteriphagewas 10-10 fold greaterthantheK (Gruhn,Fiebig&Ambrosius, 1977). K f values increased considerably aftersecondary immunizationwith DNP-HSA,upto 10 1 2 M (Fiebig,Gruhn&Ambrosius,1977). Carpimmunizedwith thymus independentDNP conjugates (DNP-Ficoll)synthesizeantibodieswithK similartoantibodies elicited bythethymusdependentDNP-HSA (Fiebig,Gruhn,Scherbaum&Ambrosius, 1979). 35 1 2 K fhoweverisonly4x10 -4x10 higherthantheircorrespondingK values.A possibleexplanationforthisobservationistheinvolvementofT-likecellsinthe differentiationofdifferentB-like cellclones (Fiebig,Scherbaum,Nuhn&Ambrosius, 1979). 0 Theintrinsicaffinityoffishimmunoglobulinisrelativelylowanddoesnot increaseduringtheimmuneresponse.Thefunctional affinityhoweverishigh. Immunoglobulin levels DatashowninTABLE6demonstratethatimmunoglobulinlevelsinserumoffish arecomparabletoimmunoglobulin levelsinman.CalculationsbasedupondataobtainedfrompassivelytransferredIginsharksindicatethatthesyntheticratein thesespeciesiscomparabletothatinman(100-150and80mgIg/kgbodyweight/day respectively) (Small,Klapper&Clem, 1970). At thispointthestatementofClem (1970)thattheonly"primitive"aspect offishimmunoglobulinsisthelimitednumberofimmunoglobulin classesseemstobe correct. TABLE6 Serumimmunoglobulin levels infish absoluteamount (mg/ml) relativeamount (Ig/totalprotein) reference 9 1 lemonshark 10-12 2 nurseshark 5-6 smoothdogfish stingray 50% 3 35% 4 17 1.7 40% 5 carp 6% 6 browntrout 6-7 10% 7 0.5-1 0.5 - 1% paddlefish man(IgM) man (total) 10-20 9 -20% 8 8 1)Marchalonis &Edelman (1968b);2)Clem&Small (1967);3)Fidler,Clem&Small (1969);4)Marchalonis&Schonfeld (1970);5)Legier,Weinheimer,Acton,Dupree& Russell (1971);6)Richter,Frenzel,Hädge,Kopperschläger&Ambrosius (1973); 7)Ingram&Alexander (1979);8)Marchalonis (1977). Location of immunoglobulin Inadditiontoserum,antibodieshavebeendetectedinintestinalandsurfacemucus ofplaice (Fletcher&Grant,1969).Mucusantibodieswere similartoserum antibodies inelectrophoreticmobilityandcarbohydrateandaminoacidcomposition.Natural hemagglutinins foundinthewater solublefractionofPacifichagfishmucuswere immunologically relatedtoserumhemagglutininsandshowedasimilarheat-sensitivity (Spitzer,Downing,Koch&Kaplan, 1976). Bradshaw,Richard&Sigel (1971)reported thepresenceofantibodytoavarietyofantigensinsurfacemucusofgar,snapper 36 andbowfin.Antibodyactivityinserumandmucuswastotallyremovedbytreatment with 2-mercaptoethanolorrabbitanti-gar IgMserum. Inrainbowtrout anti-Vibrio anguillarum agglutininscouldbedetectedinsurfacemucus 3-6weeksaftermaximum serumtiterswereattained.Serumandmucusagglutininswere identical inOuchterlony doublediffusionandimmunoelectrophoresis.Agglutinatingantibodyto Salmonella paratyphi was foundinskinmucusofchannelcatfishafterintraperitoneal injection ofbacteria.Byimmunodiffusionskinmucusgaveaprecipitationlineidenticalwith serumimmunoglobulin (Ourth,1980). Itisnotknownbywhichmechanismantibodiesgainaccesstomucus.Itis possiblethatantibodiesproduced inlymphoidorgansaresecretedinmucusorthat theyareproduced locallybymucosalplasmacells.Whenplaicewerefedheat-killed Vibrio anguillarum, highantibody titreswere foundinintestinalmucus inalmost completeabsenceofcirculatingantibody (Fletcher&White,1973a). This observation favorstheideathat localantibodysynthesis existsinfish. %Immunoglobulin ispresentinserumandmucusofskinandintestine. 37 CHAPTER4 HUMORAL IMMUNITY Following antigeninjectionittakessometimebeforethefirstantibodies appearinserum.Antibodygradually increasesandreachesaplateaufollowedbya decline.Afterasecondinjectionwiththesameantigenthelatentperiodisshorter, theresponseisacceleratedandhigherantibodylevelsarereached.Asecondaryresponseisonlyobservedwhentheanimalhasformed immunologicalmemoryafterthefirst injection.MostantibodiesbelongtotheIgMclassduringthefirstdaysofaprimary response.IgGisthepredominant antibodyclassduringthelaterphaseoftheprimary responseandespeciallyduringthesecondaryresponseinmammals. Thefirststageofthehumoral immuneresponse involvestheeliminationofantigenfromthecirculation.Inmammalsandfishthiseliminationprocesisaccomplished bymononuclearphagocytes.PhagocytosisisdiscussedinChapter2(non-lymphoid defence).However,itisobviousthatadistinctionbetweenspecificandnon-specific defenceisonlyarbitraryinthisrespect.Antigentrappingandpresentationare essential stepsintheinductionofanimmuneresponse. Antibody response TheAtlantichagfishfailedtoproduceantibodiestothesolubleantigensBSA andKLHandtothecorpuscularantigen Brucella abortus (Finstad&Good, 1966). AttemptstoinduceantibodyformationinPacifichagfishwereunsuccessfulwhenusing• awidevarietyofantigens: Brucella abortus, typhoid,paratyphoidAandBvaccine, BSA,KLH,bacteriophageT~andactinophageMSP-8 (Papermaster,Condie&Good, 1962; Papermaster,Condie,Finstad&Good, 1964).MorerecentlyitwasshownthatPacific hagfishwereabletoproduce specificantibodytoKLHandSRBC,butrepeatedimmunizationwasneededtoobtainmoderateantibodytitres (Thoenes&Hildemann,1969; Linthicium&Hildemann, 1970).AhighantibodyactivitytogroupAstreptococcalcarbohydratewasdetectedinhagfishimmunized intravenouslywithstreptococci (Raison, Hull&Hildemann, 1978a).Hagfishsynthesizebactericidal antibodiesafter injection withthegramnegativebacterium Salmonella typhosa (Acton,Weinheimer,Hildemann& Evans, 1969).Thesebactericidinsshowedalesserdegreeofspecificity (sincethey cross-reactedwithheterologousgramnegativebacteria)andashorter inductionperiod thanotherhagfishantibodies (Acton,Weinheimer,Hildemann&Evans,1971). Inthesealampreynoantibodiesweredetectedafterimmunizationwithdiphteria toxoid,BSA,BGG,SRBC,rabbitRBC,KLH,typhoidHandtyphoid0antigens.Aweak primarybutaclear-cutsecondaryresponsewasobtainedwhenusing Brucella abortus and bacteriophage T?asimmunizingagent (Papermasteretal., 1964;Finstad&Good, 1966). LaterstudiesofMarchalonis&Edelman (1968)andLitmanetal. (1970),whichwere designedtocharacterize immunoglobulins,showed that lampreydidproduce antibodies tobacteriophage V?>Brucella andhumanRBC.Inbrook lampreyprimaryandsecondary responsestoSRBCweredemonstratedinwhichbothhaemagglutinatingandhaemolysing 39- aîitibodieswereinvolved (Fujii,Nakagawa&Murakawa, 1979a). # I t isconcluded thatinspiteofinitialexperimentalfailures,antibodyresponsesareinducibleinthemostprimitivevertebrates;theAgnatha.However,the humoralimmunesystemofhagfishispoorlydeveloped.Raison,Hull&Hildemann (1978b)proposedthathagfishlackahumoralimmunesystemequivalenttothe usualBlymphocyte-plasmacellsystem. Immunoglobulinswouldexistprimarilyin amembraneboundstate,functioningaslymphocytesurfacereceptors.Thepresence ofserumimmunoglobulincouldbetheresultofsheddingofreceptorsratherthan activesecretionofimmunoglobulin. Chondrichthyeshavebeenshowntoproducespecificantibodyafter immunization withavarietyofantigens.Amongthemwereviralantigenssuchasinfluenzavirus PR8 (Clem&Sigel,1963;Sigel&Clem,1965;Clem,DeBoutand&Sigel, 1965),bacteriophageT 2 (Papermasteretal., 1964;Suran,Tarail&Papermaster,1967)andpoliovirus (Clem&Sigel,1963),furthermorebacterialantigenssuchas Salmonella paratyphi (Clem&Sigel,1963)and Brucella abortus (Finstad&Good,1966;Frommel,Litman, Finstad&Good, 1971).AlsoxenogeneicerythrocyteslikeSRBC (Finstad&Good,1966) andchickenRBC (Sigel&Clem, 1966),proteinslikeBSA,BGGandKLH (Clem&Sigel, 1963; Papermasteretal., 1964;Finstad&Good,1966;Sigel &Clem,1966;Suranetal., 1967),carbohydrateslikestreptococcalgroupAcarbohydrate (Clem&Leslie,1971; Clem,McLean&Shankey,1975;Sledge,Clem&Hood,1974)and Pneumococcus typeIIIandVIIIpolysaccharides (Clemetal., 1975)andhaptens(DNP)conjugatedto proteincarriers (Leslie&Clem,1969;Voss,Russell&Sigel,1969;Voss,Rudikoff& Sigel,1971;Sigel,Voss&Rudikoff,1972)wereused. Inlemonsharkandnursesharkkeptat27-30C,maximumantibodytitreswere obtained30-40daysafterimmunizationwithPR8orSendaivirus.After restimulation withPR8virus,renewedantibodysynthesiscouldbedetected,butnotintheorderof arealsecondaryresponse (Sigel&Clem, 1965).OtherstudiesofSigel &Clem (1966) withnursesharkindicatedthatalthoughtheanimalsshowedaprimaryresponseto BSAandchickenRBC,clear-cutsecondaryresponseswerelacking.Lemonshark,kept at26-28CproduceantibodiestoBSAaftera latentperiodof 10-12days.Maximum titreswereobtainedafter 25-40dayswithantibodylevelsremainingataplateauup to90daysafterinjection.Noanamnesticresponsewasobservedafterasecondinjection (Clem&Small,1967).Onlyafteraweakprimaryresponseaheightenedsecondary responsecouldbeobtained.AccordingtoSigel,Lee,McKinney&Lopez (1978)thehumoralimmuneresponseofsharks resemblesamammalianresponsetothymus-independent antigens. In mammals thymus-independent antigens do not evoke true secondary responses (Mer, Stastok, «augh, Prescott $toll,ffl),Sijel et al, (19Î8) m %\ CHAPTER4 HUMORAL IMMUNITY Following antigen injectionittakessometimebeforethefirstantibodies appearinserum.Antibodygraduallyincreasesandreachesaplateaufollowedbya decline.Afterasecondinjectionwiththesameantigenthelatentperiodisshorter, theresponseisacceleratedandhigherantibody levelsarereached.Asecondary responseisonlyobservedwhentheanimalhasformed immunologicalmemoryafterthefirst injection.MostantibodiesbelongtotheIgMclassduringthefirstdaysofaprimary response.IgGisthepredominant antibodyclassduringthelaterphaseoftheprimary responseandespeciallyduringthesecondaryresponseinmammals. Thefirst stageofthehumoral immuneresponse involvestheeliminationofantigenfromthecirculation.Inmammalsandfishthiseliminationprocesisaccomplished bymononuclearphagocytes.PhagocytosisisdiscussedinChapter2(non-lymphoid defence).However,itisobviousthatadistinctionbetweenspecificandnon-specific defenceisonlyarbitraryinthisrespect.Antigentrappingandpresentationare essentialstepsintheinductionofanimmuneresponse. Antibody response TheAtlantichagfishfailedtoproduceantibodiestothesolubleantigensBSA andKLHandtothecorpuscularantigen Brucella abortus (Finstad&Good, 1966). AttemptstoinduceantibodyformationinPacifichagfishwereunsuccessfulwhenusing awidevarietyofantigens: Brucella abortus, typhoid,paratyphoidAandBvaccine, BSA,KLH,bacteriophageT ?andactinophageMSP-8 (Papermaster,Condie&Good, 1962; Papermaster,Condie,Finstad&Good, 1964).MorerecentlyitwasshownthatPacific hagfishwereabletoproducespecificantibodytoKLHandSRBC,butrepeatedimmunizationwasneededtoobtainmoderateantibodytitres (Thoenes&Hildemann,1969; Linthicium&Hildemann, 1970).AhighantibodyactivitytogroupAstreptococcalcarbohydratewasdetectedinhagfishimmunized intravenouslywithstreptococci (Raison, Hull&Hildemann, 1978a).Hagfishsynthesizebactericidalantibodies after injection withthegramnegativebacterium Salmonella typhosa (Acton,Weinheimer,Hildemann& Evans, 1969).Thesebactericidins showedalesserdegreeofspecificity (sincethey cross-reactedwithheterologousgramnegativebacteria)andashorter inductionperiod thanotherhagfishantibodies (Acton,Weinheimer,Hildemann&Evans,1971). Inthesealampreynoantibodiesweredetectedafterimmunizationwithdiphteria toxoid,BSA,BGG,SRBC,rabbitRBC,KLH,typhoidHandtyphoid0antigens.Aweak primarybutaclear-cutsecondaryresponsewasobtainedwhenusing Brucella abortus and bacteriophage 1? asimmunizing agent (Papermasteretal., 1964;Finstad&Good, 1966). LaterstudiesofMarchalonis&Edelman (1968)andLitmanetal. (1970),whichwere designedtocharacterize immunoglobulins,showedthatlampreydidproduce antibodies tobacteriophageF 2 , Brucella andhumanRBC.Inbrook lampreyprimaryandsecondary responsestoSRBCweredemonstratedinwhichbothhaemagglutinatingandhaemolysing 39 antibodieswere involved (Fujii,Nakagawa&Murakawa, 1979a). # I t isconcluded thatinspiteofinitialexperimental failures,antibodyresponsesareinducible inthemostprimitivevertebrates;theAgnatha.However,the humoral immunesystemofhagfish ispoorlydeveloped.Raison,Hull&Hildemann (1978b)proposed thathagfishlackahumoral immunesystemequivalenttothe usualBlymphocyte-plasma cell system. Immunoglobulinswouldexistprimarily in amembranebound state,functioningas lymphocyte surface receptors.Thepresence ofserumimmunoglobulincouldbetheresultofsheddingofreceptorsratherthan active secretionof immunoglobulin. Chondrichthyes havebeenshowntoproducespecific antibodyafter immunization withavarietyofantigens.Among themwereviral antigenssuchasinfluenzavirus PR8 (Clem&Sigel,1963;Sigel&Clem,1965;Clem,DeBoutand &Sigel, 1965),bacteriophageT 2 (Papermasteretal., 1964;Suran,Tarail &Papermaster, 1967)andpoliovirus (Clem&Sigel, 1963), furthermorebacterial antigens suchas Salmonella paratyphi (Clem&Sigel,1963)and Brucella abortus (Finstad&Good, 1966;Frommel,Litman, Finstad &Good, 1971).Alsoxenogeneic erythrocytes likeSRBC (Finstad&Good, 1966) andchickenRBC (Sigel&Clem, 1966),proteins likeBSA,BGGandKLH (Clem&Sigel, 1963; Papermasteretal., 1964;Finstad &Good, 1966;Sigel &Clem, 1966;Suranet al., 1967),carbohydrates likestreptococcal groupAcarbohydrate (Clem&Leslie,1971; Clem,McLean&Shankey,1975;Sledge,Clem&Hood,1974)and Pneumoaooous typeIIIandVIIIpolysaccharides (Clemetal.,1975)andhaptens(DNP)conjugatedto proteincarriers (Leslie&Clem, 1969;Voss,Russell &Sigel,1969;Voss,Rudikoff& Sigel,1971;Sigel,Voss &Rudikoff,1972)wereused. Inlemonsharkandnursesharkkeptat 27-30C,maximum antibody titreswere obtained30-40daysafterimmunizationwithPR8orSendaivirus.After restimulation withPR8virus,renewedantibody synthesis couldbedetected,butnot intheorderof arealsecondaryresponse (Sigel&Clem, 1965). OtherstudiesofSigel &Clem (1966) withnursesharkindicated thatalthoughtheanimalsshowedaprimaryresponse to BSAandchickenRBC,clear-cut secondaryresponseswere lacking.Lemon shark,kept at26-28CproduceantibodiestoBSAafteralatentperiodof 10-12days.Maximum titreswereobtainedafter 25-40dayswithantibodylevels remainingataplateauup to90daysafterinjection.Noanamnestic responsewasobservedafterasecondinjection (Clem&Small, 1967).Onlyafteraweakprimary response aheightened secondary response couldbeobtained.According toSigel,Lee,McKinney&Lopez (1978)thehumoralimmune response ofsharks resembles amammalian response tothymus-independent antigens.Inmammals thymus-independentantigensdonotevoke truesecondary responses (Baker,Stashak,Amsbaugh,Prescott &Barth, 1970).Sigeletal. (1978)suggest that sharks lackT-helpercellsand that shark "B"cellsareabletorespond to "mammalian thymus-dependent"antigens inaT-independent way. InChapter6thequestionof lymphocyte heterogeneity infishwillbediscussed inmoredetail. 40 Thechondrosteanpaddlefishproducedantibodiesafterimmunizationwith abortus or Salmonella paratyphi Brucella (Fish,Pollara&Good, 1966).Antibodiesremainedde- tectableforlongperiodsaftersecondarystimulation (Pollara,Finstad&Good, 1966). Definiteprimaryandsecondaryantibodyresponseswereobtainedwithproteinantigens likeBSA,BGGandKLH (Finstad&Good,1966). Initialstudiesonthehumoral immuneresponseoftheholosteangarshowedthat theanimalsdidproduceantibodiestoBSAbutthatasecondaryresponsewasabsent (Sigel&Clem,1965;Clem&Sigel,1965,1966). Inalaterstudy,Bradshaw,Clem& Sigel (1969)demonstrated thatthegarproducedantibodytodiphteriatoxoidandBSA afteralatentperiodof11-30days.Withbothantigensaclearsecondaryresponse wasobtained (80-foldenhancedantibodytitresfordiphteriatoxoid).Antibodiesproducedduringasecondaryresponsepersisted forover275days.Thebowfinshoweda barelydetectableprimaryantibodyresponse tobacteriophageT-,andKLH.Thesecondary responsewasvigorousforT 2butnotimpressive forKLH (Papermaster,Condie,Finstad, Good&Gabrielsen,1963;Papermasteretal., 1964). Thecapabilityofteleost fishtoresponduponantigenicstimulationwithspecificantibodyproductionhasbeendemonstratedsincethebeginningofthiscentury. Mostoftheearlystudieswereperformed inordertoobtainprotective immunity againstepizooticdiseasesinculturedfish.Thisaspect,incombinationwithvaccin development,willbediscussed inaseparateparagraph inthischapter. Primaryandsecondaryantibodyresponseshavebeenobservedinteleostfish usingprotein,cellularandcarbohydrate antigens (seereviewofCushing,1970; Carton,1973;Corbel,1975).Threetypicalexampleswillbegiven. 1)Goldfishproduceantibodyafteralatentperiodof7-10dayswhenimmunized withBSAat25C.Peaktitreswerereachedbyday20.Inasecondaryresponse antiBSAantibodiesweredetected 3daysafterimmunization.Peakantibody titres,reached atday 15,exceededthoseofaprimary response (Trump&Hildemann, 1970). 2)InMozambiquemouthbrooderkeptat30C,maximumantibodytitreswereobtainedonday11afterimmunizationwithSRBC,thelatentperiodwasonly2days. FollowingasecondinjectionwithSRBC,antibodiesweredetectedwithin2days,the 8-foldenhancedpeaktitrewasreachedonday8 (Sailendri&Muthukkaruppan, 1975). 3)Browntrout,keptat20Cwereimmunizedwith Salmonella typhimuvium lipopoly- saccharide (acarbohydrate antigen).Inaprimaryresponseantibodiesweredetected after14days,maximumtitresbetweenday56and63.Inasecondaryresponsethe latentperiodwas 14days,theenhancedpeakwasreached34-40daysafterinjection (Ingram&Alexander, 1980). Thelengthofthelatentperiodandthekineticsoftheantibodyresponseare influencedbythefollowingfactors: a)theambienttemperature.Theeffectoftemperatureontheimmuneresponseis discussedinChapter7.Evenwhenkeeping2different speciesatthesametemperature 41 similarkineticprofilesarenottobeexpectedbecause thesespeciesmayhavedifferentpreferentialtemperatures.Forexamplepeak antibodytitresinaprimaryresponse at15Cafter immunizationwithMS~bacteriophagearereachedinbrowntroutonday 35andincarponday42(O'Neill,1980). b)thetypeofantigen.Inbrowntrout,keptat20°C,maximumtitresto Salmonella typhi werereachedafter49days,toKLHafter43days (Ingram&Alexander,1976a). c)thenatureoftheantigen.Busch (1978)injectedrainbowtroutwithpreparations ofentericredmouthdisease (ERM)bacterium.Thelatentperiodwas shorterinanimals injectedwithwatersolublepreparations thaninthosereceivingorganicsolvent solublepreparations (13and28daysrespectively).Moreover,ashorter latentperiod andhigherantibody titreswereobtainedafter injecting formalinkilledbacteriathan afterthesameprocedurewithphenolkilledbacteria. d)therouteofadministration.Indace,keptat18Cantibodywasdetected 10days afteranintraperitonealinjectionofhorseserumwhereasthelatentperiodtook12 daysafter intramuscular injection.Moreoverahigherpercentageofanimals responded to intramuscularthantointraperitoneal injectedantigen (Harris,1973a). e)theantigendose.Alongerlagperiodwasobservedwhenimmunizing carpwithlow dosespigserum.However,thepeakdayoftheresponsewasnotdependentofantigen dose (Ambrosius&Schäker, 1964). # F r o mthedatamentioned aboveitmaybeclearthatitisalmost impossibleto drawdefiniteconclusionswhenconcerningthekineticsoftheantibodyresponse. Onlyageneralconclusioncanbedrawn:thecapacitytomountahumoralantibodyresponseandtheformationofimmunologicalmemoryiswelldevelopedin teleostfish.ThecapacityofChondrichthyestodevelopimmunologicalmemoryis questionable. Cellular aspects Afterantigeninjectionittakesacertaintimebeforethefirstcirculating antibodiesappear (latentorlagperiod).During thatperiodantigeniseliminated fromthecirculation (clearance)duetotrappingbymacrophagesanddendritic cells inlymphoidorgans (Ellisetal., 1976;Secombes&Manning, 1980). Subsequently B-likelymphocytesstarttoproliferateanddifferentiate intoplasmacells.Plasma cellssynthesizeandsecretespecificantibody.Infish,twotechniqueshavebeen usedtostudythesecellularaspectsofthehumoral immuneresponse:therosette assayandtheplaqueassay.Withtherosetteassay,originallydevelopedbyZaalberg (1964)andBiozzi,Stiffel,Mouton,Liacopoulos-Briot,Decreusfond&Bouthillier (1966)thenumberofantigenbindingcells (ABC)canbedetermined.Inthisassay cellscarryingsurface immunoglobulinorsecretingantibodyspecificfortheantigenusedreact in vitro withthisantigen.Whenxenogeneicerythrocytesareusedas antigen,cellssurroundedbyerythrocytes (rosettes)areformed.Cellswithasingle layeroferythrocytesareABCbutcellswithamultiple layeroferythrocytesrepre- 42 sentantibody secreting cells.Intheplaque assay,originallydevelopedbyJerne& Nordin (1963)onlyantibody formingcellsarevisualized. Inbrook lamprey,immunizedwithahighSRBCdoseABCcouldbedetected after4 daysinspleenandblood.Maximumnumberswereobtainedonday12.Afteralow dose immunizationmaximumABCnumberswere foundonday8.Thisobservationisin contrasttodatamentioned abovewhereitwasshownthatlowantigendosesextendthe latentperiod.MultilayeredABCwereobservedinspleenandblood.Thus,although lamprey lackplasmacellsonmorphological grounds (Finstead&Good,1966)cells whichactively secrete antibodyarepresent (Fujii,Nakagawa&Murakawa, 1979b).In rainbouw troutABCwereobservedinspleenandpronephros afterimmunizationwith SRBC.Cellswiththeultrastructuralmorphologyofplasmacellsweresurroundedby multiple layersofSRBC.Unfortunatelytheimmunizationscheduleusedinthisstudy doesnotallowustodrawconclusions aboutthekineticsoftheABCresponse (Chiller, Hodgins,Chambers&Weiser, 1969).ABCwerefoundingoldfish thymus,spleenand pronephros fromday2onwards,maximumnumbersbeingreachedatday8.Multilayered ABCwerepresentinspleenandpronephros (Warr,Deluca,Decker,Marchalonis&Ruben, 1977).Alsoinstudiesonthecarrier-hapteneffecttherosetteassayhasbeenused tomonitortheresponse.RelevantexperimentsarediscussedinChapter6. Studiesofthehumoral immuneresponseusingtheplaqueassayhavebeenperformedonlyinTeleosts.Thespeciesstudiedarebluegill (Smith,Potter&Merchant, 1967),rainbow trout (Chiller,Hodgins&Weiser, 1969),goldfish (Neale&Chavin, 1971),perch (Pontius&Ambrosius,1972)andMozambiquemouthbrooder (Sailendri& Muthukkaruppan, 1975). # T h e cellular aspectsofthehumoral immuneresponsehavebeenstudiedina limitednumberofteleostsspecies. Firstplaqueforming cells (PFC)were observed2daysafter immunization.Peak ofthePFCresponsepreceedsinallcasesthepeakofserum antibodyandis reachedatthesamedayindifferent lymphoidorgans.Anacceleratedaswellas enhancedPFCresponsewasdemonstrated aftersecondary immunization. Vaccination and protective immunity Inearlystudiesithasbeenshownthatteleost fisharecapableofproducing antibodies againstbacterial antigens (reviewedinRidgway,Hodgins&Klontz,1966 andAvtalion,Wojdani,Malik,Shahrabani&Duczyminer,1973).Thesestudieswere aimedtodevelopvaccination scheduleswhichprovideprotective immunity against epizooticdiseasesincultured fish.Most attentionhasbeendevotedtothemain bacterialdiseases:vibriosis (causedby Vibrio anguillarwri), entericredmouthdisease (Yersinia ruckeri), furunculosis (Aeromonas salmonicida), columnarisdisease [Flexibacter columnaris) andbacterialkidneydisease [Corynebacterium spp.). Injectionsof Vibrio anguillarum bacterinevokedantibody titresinchinook salmonandcohosalmon.Immunizedanimalswereprotected againstanatural challenge 43 upto6monthspost-injection (Antipa,1976).Severalreportsdescribeantibody responsesagainst Aevomonas salmonioida afterintramuscularorintraperitonealinjec- tions (Krantz,Reddecliff&Heist,1963,1964;Post,1966;Maisse&Dorson,1976).No mortalityoccurredinimmunizedanimalsuponchallengewithlivebacteria.High agglutinationtitresagainst Flexibaoter oolumnaris wereobtained inrainbowtrout afterparenteralvaccination.Susceptibilityofvaccinatedanimalstochallenge withvirulentcolumnarisbacteriawasgreatlyreduced (Becker&Fujihara, 1978).It canbeconcludedthatvaccinationbyinjectingkilledbacteriaevokesahumoral antibodyresponseandprovidestheanimalswithprotective immunityuponchallenge withlivebacteria. Inlargescalefishcultureimmunizationofindividualanimalsishardlyapplicableforeconomicalreasons.Thereforemassvaccinationmethodshavebeendeveloped: a)Oralimmunization.Thismethodhasbeenusedforabout40yearsandconsistsof mixingvaccinwithfood.Ahumoralantibodyresponsehasbeenobservedbothinblood andmucusofintestineandskinafterfeedingplaicewith Vibrio anguillarvm antigens (Fletcher&White,1973a). Oralimmunizationhasyieldedpositive (e.g.Braaten& Hodgins,1976;Fryer,Rohovec &Garrison,1978)butalsonegativeresults (Schachte, 1678; Udey &Fryer,1978).Efficacyoforal immunizationisreviewed inSnieszko (1970),Anderson (1974)andEvelyn (1977). Inmostcasesoralvaccinationhasnotbeen satisfactorybecauseofthevariableresultsandthediscrepancybetweenlaboratory andfieldstudies. b)Sprayvaccination.Inthismethodtheanimalsareremovedfromwaterandunderhigh pressurevaccinissprayedonfish (Evelyn,1977;Gould,O'Leary,Garrison,Rohovec& Fryer, 1978).Resultsobtainedthusfarsuggestthatthistechniqueismoreeffective thanoralimmunization. c)Bathimmunization.Inafirstversionofthistechniquethefishwereplaced ina vacuumchamber inahyperosmoticvaccinsolution.Duringashortperiodtheatmosphericpressurewasreduced (Amend, 1976). Inasecondversionantigenuptakewas accomplishedbymerelyplacing theanimalsinahyperosmoticvaccinsolution (Amend&Fender,1976).Recentlyithasbeenshownthatdirectimmersionisaseffectiveashyperosmotic infiltration (Egidius&Anderson,1979;Antipa,Gould& Amend, 1980). Incohosalmon,highagglutinationtitreswereobservedagainst V. anguillarum and A. salmonioida afterhyperosmotic infiltrationwithabivalentbacterii (Antipa&Amend, 1977). #Basedupontheresultsobtainedthusfar,bathimmunizationseemstobesuperior tooralorsprayvaccination.Itisapromisingmethodinthepreventionofinfectiousdiseases inculturedfish. Relative littleattentionhasbeenpaidtothecellularaspectsoftheantibodyresponseindevelopingvaccinationschedules.Anderson (1978)adaptedtheplaque assaytodetectantibodyformingcells inrainbowtroutinjectedwiththe 0-antigen of Yersinia 44 ruckevi. Inanimalskeptat17C firstPFCweredetectedafter 7days,the peak occurredonday11(Anderson,Roberson&Dixon, 1979b).PFCwerealso detected after immersionoftheanimalsintheantigensolution (Andersonetal.,1979a).The minimalantigenconcentrationrequiredtoevokearesponsewas5yg/ml (Andersonet al., 1979c).After flushexposureofrainbowtroutat11°CfirstPFCwereobservedon day9whilehighestPFCnumberswere foundonday14-16 (Andersonetal.,1979d). Anothermethodtostudytheimmune statusofrainbow troutafterbath immunization hasbeendevelopedbyChilmonczyk (1977, 1978b).Lymphocytesoftroutafter survival ofanaturalVHSinfectionwere inducedtoblast transformation in vitro withVHSvirus,whereas controlanimalsdidnot.Specific lymphocyte stimulationwas alsoobtainedinvaccinatedandsubsequently challenged animals. Anaphylaxis Inmammalsanaphylactic reactionsarecausedbyinteractionofantigenwitha special antibodyclass (IgE)boundtomast cells.This interaction leadstodegranulationofmastcells (releaseofhistamine). Anaphylactic reactionsweredemonstratedinperch,sunfish,rockbass,and goldfish (Dreyer&King, 1948). Sensitizationafter intraperitoneal injectionsof eitherhorse serumorovalbuminelicited signsofanaphylaxis afterre-exposureto homologous antigen followingalatentperiodofatleast10days.Theanaphylactic reactionwas specificandcharacterizedbyfoldingandcurlingoffins,equilibrium disturbance,sinkingtothebottomanddiminishedmovement.These signspersistedfor 6 hours.Unsensitized fishdemonstratednoanaphylatic symptoms. Later reports failedtorepeat theseobservations.ClemandLeslie (1969) attemptedtodemonstrate anaphylaxisinthemargatebytwodifferent approaches.Inthe firstapproach animalswere intravenously injectedwithmargate antiseratoBSA.Animalswere injected intravenouslywithBSA4to24hours laterbutnoreaction followed. Inthecutaneous approach,animalswere injected intravenouslywithBSAandEvans blue4to24hoursafter subcutaneous injectionofmargate antiserumtoBSA.No obviousblueingwasnotedatthesiteofinjection.Harris (1973b)wasunableto demonstrateananaphylactic reactionindaceandchubusinghorse serumoreggalbumin. However,inplaiceandflounder intradermal injectionswithfungal extracts cause immediate erythema (Fletcher&Baldo, 1974). Immediatehypersensitivity reactions occurredinchannel catfishandgoldfish following immunizationandchallengewith different antigens (solubilizedprotozoa,BSA,versatol).Thereactions (disorientation,vertical swimming,increased opercularmovementandgasping)were specific forthesensitizing antigenandcouldbepassively transferredtononsensitized recipientswith serumfrom sensitized animals (Goven,Dawe&Gratzek, 1980). Mastcellshavebeendescribedinfish (Ellis,1977a)andithasbeenshownthat thesecells containhistamine (Roberts,Young &Milne, 1972).AnIgE-likemolecule hasnotbeen foundinfish.IfIgMcanmimicthehomocytotropicIgEfunctionorthat mast cellsoffishareactivatedbyanothermechanismisnotknown. #Anaphylaticreactionshavebeendemonstratedinanumberofteleost species.If 45 immunoglobulinisinvolved inthesereactionsisnotknown. 46 CHAPTER5 CELLULAR IMMUNITY Cellularimmunity involvesallspecific immuneresponsesmediatedbyacombinationofliving lymphoidandmononuclearphagocytesandtheirnon-antibody effector molecules.Cellmediatedimmunity includesthemixedleukocytereaction,migration inhibition,delayedtypehypersensitivity, transplantation immunityandtumor immunity.Arelatedbutnonantigenspecificreactionusedfordemonstration ofTcellactivityisthein vitro responsetocertainmitogens.Thecapacityof fishlymphocytestorespondto"Tcellmitogens"isdiscussedinchapter6. Mixed leukocyte réaction (MLR) McKinneyetal. (1976,1980)failedtodemonstratepositiveMLRusingcells fromsharks,snappersandgars.Inxenogeneiccombinations,catfish leukocytesas targetcellsevokedpositiveMLRbyhumanperipheralbloodcellsbutthereciprocal combinationgavenegative results.Inrainbowtroutitwasobserved thathomologous mixturesofperipheralblood leukocytesorpronephros cellsobtained from2individualfishrevealedmarkedproliferative responses.Maximumresponseswereobserved onday7withpronephros cellsandonday9withperipheralbloodlymphocytes (Etlinger, Hodgins&Chiller,1976b; 1977).Inbluegillapositivemixed lymphocyte reaction wasobtainedwithpronephros cellsat32°Cbutnotat22°C.PositiveMLRhasbeen observedin12outof15randomtwo-waycultures.Negativereactionswerenot correlatedwithalowresponsivenesstophytohaemagglutinin (PHA)byeithercell preparation (Cuchens&Clem, 1977). # I nanumberofTeleostspositiveMLRhasbeenobservedwhileinotheresnegative resultswere obtained. Migration inhibition (MI) Jayaraman,Mohan&Muthukkaruppan (1979)assessedthecellmediated immune responseofMozambiquemouthbroodertoSRBCusingthemigrationinhibition (MI) technique.FormalinizedSRBC,whichhavebeenshowntoactivateT-helpercells specificallywithoutthegenerationofplaque formingcellsinmice (Dennert& Tucker, 1972)evokedanenhancedMIresponsewithoutadetectablePFCresponse. OptimalMIresponseswere recordedwhenusingrelativelylowSRBCdoses.Inthe garMIreactionswere inducedinkidneyandperipheralbloodcellsafterasecondaryallograftrejection (McKinney,McLeod&Sigel, 1980).ThelectinsPHA,concanavalinA (conA)andpokeweedmitogen (PWM)alsoevokedMIreactions (McKinney, Ortiz,Lee,Sigel,Lopez,Epstein&McLeod, 1976).Themigratingcellswereidentifiedasmacrophagesbutitwaspresumed that lymphocyteswere involvedinproducing inhibitorysubstances.Intheelasmobranch dogfishanMIresponsetoanantigenextractofthenematode Proleptus obtusus couldbedemonstrated (Morrow&Harris, 1978). # M I reactionshavebeenobtainedinallfishspecies testedthusfar. 47 Delayed type hypersensitivity (DTH) Adultsealampreyswere injectedintramuscularwithcompleteFreund'sadjuvant followed21dayslaterbyachallengewitholdtuberculin.Within48hoursall sensitizedanimalsshowedtypicaldelayedtypeskinreactions (Finstad&Good, 1966; Good,Finstad&Litman, 1972). Inhagfish,noevidenceforDTHtoBGGortuberculin was found (Papermaster,Condie&Good, 1962). InbowfinaDTHreactionwas observed 3daysafterchallengewith Ascaris antigen.Thechallengewasgiven30daysafter initialsensitization.Thereactionconsistedofawelldefinedinduratedareain theaxialmusculature (Good&Papermaster,1964). Inthehomed shark,guitarfish andpaddle fish,moderatetosevereinflammatory reactionsoccurredafterrepeated injectionwithBGGincompleteFreund'sadjuvant.AccordingtoFinstad&Good (1966) thereactionswereduetoDTH.Inrainbowtroutapositivedelayed cornealreaction topurifiedproteinderivateoftuberculin (PPD)hasbeendemonstrated1monthafter immunizationwithcompleteFreund'sadjuvant.Thereactionreachedapeakin3-5 daysandlasted 12days.Unimmunizedcontrols injectedintracorneallywithPPDonly showedatransientandfaintcloudingreaction (Ridgway,Hodgins&Klontz, 1966). # Delayedtypehypersensitivityreactionshavebeendemonstratedinallclasses offish,excepthagfish. Transplantation immunity Pacifichagfish-oneofthemostprimitivevertebrates-wassupposedtobeincapableofrejectingallografts (Good&Papermaster,1961;Papermaster,Condie, Finstad&Good, 1964).However,laterstudiesrevealedthatthecapacitytorecognizeandrejectskinallograftswaswelldevelopedinthisspecies (Hildemann& Thoenes, 1969).Allgraftdestruction involvedinflammatoryreactions,lymphocyte infiltration,capillaryhemorrhageandpigmentcelldestruction.Inanimalskept at 18-19Cfirst-setallograftsshowedachronictypeofrejectionillustratedbya mediansurvivaltime (MST)ofthegraftsof72days. Second-setgraftsplacedone monthlaterwererejectedwithin28days.Whensecond-setgraftswereplacedimmediatelyafterthefirstrejectionprocesswascompleted,anacute rejectionoccurred within14days.Rejectionoffirst-setskinallograftsinsealamprey,keptat 1821Cstartsduringthe3thweekaftertransplantation.Between42and47allografts arecompletelyrejected (Finstad&Good, 1966;Perey,Finstad,Pollara&Good, 1968). Therejectionofsecond-setgrafts,placed39days afterfirst-setgraftingstarts inthesecondweek.By18daysmostgraftswerecompletely destroyed (Pereyetal., 1968). Stingrays,belongingtotheclassofChondrichthyes,keptat18-28Cshowedby day21theonsetoffirst-setgraftrejection.Survivalendpointsranged from30-53 days.Second-setgraftsevokedamoresevere inflammatoryreaction,mostgrafts showedsurvivaltimesoflessthan12days (Pereyetal., 1968). Inthehomed shark, keptat22°CfoursuccessivesetsofskinallograftsyieldedMST'sof41,17,9and 48 7 daysrespectively (Borysenko&Hildemann, 1970). Lymphocytes andmononuclear cells werepresent inthe inflammatory exudatebutnoplasmacells (Finstad &Good, 1966). Intheholostean gar,first-set allograftswere rejected inanacutemanner (McKinney,McLeod&Sigel, 1980). Duringthe first8days aftertransplantation both autologousandallogeneic graftswereinvadedbyinflammatory cells. Subsequently, allograftsproceeded to focal andextensive necrosis ofthe connective tissuebyday 10-18whilechromatophores cleared. Cells infiltrating the allografts were identified as lymphocytes,monocytes andgranulocytes.Second-set allografts wereallrejectedby day 12.Anotherinteresting fishisarrowanabelonging tothe superorder Osteoglossomorpha whichincludes fishnearorjustabovetheholostean leveloforganization. Inarrowanasmaintained at 25Cfirst-set skin allografts wererejected inasub-acutemanner (MST 17.9days)whereas second-set grafts showed anacute rejectioncharacterized byanMST ofS.1 days (Borysenko &Hildemann, 1969). Histopathologicmanifestations ofallograft rejection includehyperplasia, lymphocyte infiltration,hemostasis,pigment cellgranulationanddonorcellreplacementbyhost tissue (Hildemann, 1970). IntheChondostreanpaddlefish,keptat 18-25°C,first-set skinallograftswere rejected betweenday 42-68. Second-set graftswererejectedwithin 12days.The second-set rejectionwas characterized bypronouncedhemorrhage,followedby necrosis (Pereyet al., 1968). Inteleost fish,kept atoptimal temperatures,allografts are always rejected inanacutemanner,i.e. rejection times shorterthan 14days.Transplantation immunity hasbeenextensively studied ingoldfishvisingthescale grafttechnique. Following transplantation both autografts andallografts become revascularized,the time required forrestoration ofcirculation varies from 1dayat 32Cto 12-15days at 10C (Hildemann, 1957). Allograftsbecomeovergrownwithhyperplastic host tissue andelicitcapillary leakage andvasodilation inthe contact zonewith recipient tissue.Theendpointofdonortissuebreakdownhasbeenestimatedbyabiological test,i.e.regraftingscalesonthedonor. Itwas foundthatallografts survivedup tothetimethatclearing ofthedensehyperplastic tissue grownoverthegraft started.TheMSToffirst-set allografts ingoldfishkept at 25Cwas 7.2 days. Second-set grafts,placed 25days after first-set grafting,induce earlyand severe inflammation andwere rejected rapidly (MST4.7 days) (Hildemann &Haas, 1960). With anincreasingnumberofallografts,ranging from 1-9 graftsper animal,nosignificantantigendosageeffect ontheMSToffirst-orsecond-set allograftswas observed (Hildemann, 1957). A definite secondary immune response totissue allograftswas obtained already at6-8 days following first grafting. The followingexperiments havebeenperformed todemonstrate that allograft rejection isacell-mediated immune reaction.Lyophilized graftsorgraftsheatedat 48C for20minutes didnotprovoketransplantation immunity asmanifestedby the findingthat second-set graftswerenot rejected faster.Probablynoisohaemagglutinating antibodies areinvolved inthenormalprocess ofgraftrejection sinceno 49 alterationinserumtitreofrecipient animals towardsredbloodcellsofdonor animalswasobserved afterscale rejection.Inanothersetofexperiments animals were immunizedwithwholeblood fromdonor animals.Fourintraperitoneal injections yieldedahaemagglutinationtitreof1:526 whereas2intramuscular injections gave risetoaserumtitreof1:42.Whentheseanimals receivedscaleallograftsfrom theirrespectiveblooddonorsnosecondary responsewas evidentinanimals injected bytheintraperitoneal route (MST7.2days)butastrong immunitywasexpressedin animals injectedbytheintramuscular route (MST5.6days) (Hildemann, 1958). Sailendri (1973)studiedallograft rejectioninMozambiquemouthbrooder.In animalskeptat25C,allografts showedswelling,hyperplasiaandsevere inflammation ontheseconddayaftertransplantation. Laterexpansionofmelanophoresoccurred. Inflammation disappearedatthe6thdayanddésintégrationofmelanophoreswascompleted2days latermarkingthesurvivalend-pointofthegrafts.Thegraftswere invadedbyleukocytes fromday3onwards,withamaximumonday6.Therejection processofsecond-set allograftswasaccompaniedbyamore severe inflammation. Second-set allografts,transplantedaslongas4month after first-set,were rejected inanacceleratedway,indicatingalonglivedimmunologicalmemory. Xenografts evokedamoresevere inflammationandfaster rejection thanallografts.Antigen dosage (3-18allograftsperanimal)hadnoeffectontheMSTofthegrafts.Secondsetallografts transplanted fromathird-party donorwere rejectedinaprimary fashion. # I n Agnathaandcartilaginous fish allograftsarerejectedinachronicway (MST>30days). Sub-acute rejection (MSTapproximately20days)occursin Chondostreans andHolosteans,whileTeleosts showanacute rejectionofallografts (MST<14days). Second-set graftsarealways rejected fasterthanfirstset. Ithasbeendemonstrated thatallograft rejectionisamanifestationof cellular immunity. Ontogeny of transplantation immunity Adult rainbowtrout,keptat16-18C,reject skingraftsin19-21 days.Firstsetgraftsareinvadedbylargenumbersoflymphocytesonday5postgrafting followedbymaximal infiltrationonday9.In26dayoldtrout lymphocytesarenotpresent inthegraftbeforeday7reachingamaximumatday12.However,thetotalrangeof rejectiontimes fallswithin thatofadults (Botham,Grace&Manning, 1980). Inadultcarp,keptat22-23C,lymphocyte infiltrationinfirst-set skingrafts starts2daysaftergrafting,reachingamaximumbyday4-6.Allograft breakdown commencesbyday8while totalrejectionoccursbyday14postgrafting.In2-4weeks oldanimals invading lymphocytesareseen firstbetweenday4-8aftergraftingand graftbreakdown startsatday16.In2monthsoldcarp lymphocyte infiltration also startsbyday4-8,butgraftbreakdown commencesbyday11.Itisconcluded thatcarp asyoungas16daysposthatchingarecapableofmountinganallograft responsebut completematurationofthecellular immune systemtakes over2months (Bothametal., 50 1980). TheMSToffirst-set allografts in4.5montholdMozambiquemouthbrooderis thesameasinadults (5.4and5;2daysrespectively).Inyoungeranimals (1.5 months)scaleallografts survived for10.9days (Sailendri,1973). # I n oviparous Teleosts thecapacityoflarvae torejectallografts starts 16-45days after fertilization. 51 CHAPTER6 LYMPHOCYTE HETEROGENEITY The lymphocytesofhighervertebratescanbedividedin2major subsets accordingtotheirorigin,functionandcharacteristics.Cellsderived fromthethymus (Tcells)areinvolvedincellular immune reactions suchas:allograft rejection, graftversushost reaction,mixed lymphocyte reaction,delayed typehypersensitivityandhelper functioninantibody formation.B lymphocytes,whicharederived fromthebursaofFabriciusinbirdsandfromabursa-equivalentinmammals,mediatehumoral immunitybyproducing antibodies.Tcells functionpredominantlyby direct contactwith antigenwhileplasmacells (Bcellderived)produce antibodies whicheitherdirectlyorindirectlyactuponantigens.InTABLE7somecharacteristicsofmammalianTandBcellsarelisted. TABLE7 Characteristics ofTandB lymphocytes inadultmammals Feature T lymphocyte B lymphocyte bonemarrowand/orbursa-equivalent origin thymus Thy-1 antigen present absent membraneboundIg absent present Fereceptor absent present C,receptor absent presentonsomeBcells mitogenresponse PHA,ConA LPS "carrier-reactive" + - "hapten-reactive" - + function helper cell, suppressorce 11, killercell plasmacellprecursor InthisChapter datawillbepresentedwhicharerequiredtoanswerthequestion whether fish lymphocytescanbeclassifiedinTandBsubsetsornot. Thy-1 antigen Thy-1wasshownbyReif&Allen (1963)tobeasurface antigenpresentonmouse thymocytesandnervous tissue.Laterstudies revealed thatThy-1 antigencould beusedasamarkerformouseTcells (Raff,1971). Most anti-Thy1seraareisoantiserabutTcell specific antiseracanalsobeobtainedbyimmunizing rabbits withmousebraincellsandabsorbingtheantiserumwithmouseerythrocytesandliver cells (Golub, 1971;Thiele,Stark&Keeser, 1972). Strictly speaking these antisera cannotbedenominated anti-Thy-1 serabuttheyareusefulasaTcellmarker. Cuchens&Clem (1977)preparedarabbit antiserum againstbluegill braintissue. Incombinationwithcomplement thisantiserumkilled about 70%ofpronephros lymphocytes. Cellssurvivingtheantiserum treatment responsedtoLPS(amammalianBcell 53 mitogen,seebelow)butnottoPHA(amammalianTcellmitogen)whereasuntreated pronephroscellscanbestimulatedbybothLPSandPHA.Theseresultssuggestthat bluegill lymphocytesresponsivetoPHAcarrysurfaceantigensrelatedtomurine Thy-1antigen. Surface immunoglobulin (slg) InmammalsTcells lackslginthesense thattheydonotreactwith antiseradirectedagainstserumIg(Raff,1970).Ithasbeenestablishedthatthevast majorityoffishlymphocytes,includingthymocytesbearsurface immunoglobulin (TABLE 8). Thisconclusionisbasedupontheobservationthatarabbitantiserum raisedagainst fishserumimmunoglobulinreactswithsurfacematerialoflymphocytes. Thepositivereactionoftheanti-immunoglobulinserawiththymocytesisprobably notduetocross-reactivitywithcellsurfacecarbohydratesbecause (1)components withanelectrophoreticmobilityofimmunoglobulinpolypeptidechainscanbeextractedfromthymocytes (seebelow)and(2)apositivereactioncanbeobtainedusing antiseradirectedagainst immunoglobulinlightchainswhich lackacarbohydrate moiety (Fiebig&Ambrosius, 1976;Clem,McLean,Shankey&Cuchens,1977). Interestingly,quantitativeandqualitativedifferencesinslgonlymphocytesfromdifferent lymphoidorgansexistinfish.Carpperipheralbloodandpronephros lymphocytescarry moreslgmoleculespercellthanthymocytes (Fiebig,Scherbaum&Ambrosius,1977). LymphocytesofgoldfishandCrusiancarpareheterogeneousinthequantitative distributionofslg:fluorescenceintensityofspleen>>pronephros>thymus (Warr, DeLuca,Decker,Marchalonis&Ruben,1977;DeLuca,Warr&Marchalonis,1978).Alower quantityofslgonskatethymocytescomparedwithsplenocyteswassuggestedbyEllis &Parkhause (1975).Inrainbowtroutthymocytespossessedatleast 10-foldlower amountsofslgcomparedwithsplenocytes (Yamaga,Etlinger&Kubo,1977).Inblue gill,however,quantificationofslgrevealedthattherewaslittledifferencebetweenlymphocytesfromperipheralblood,spleen,pronephrosandthymusinthisrespect (Clem,McLean,Shankey&Cuchens,1977). Inordertofurthercharacterizeslgoncarplymphocytes,Fiebig &Ambrosius (1976)radioiodinatedperipheralblood,pronephrosandthymuslymphocytesandextractedsurfaceproteinswithnon-ionicdetergents.Proteinwasanalysed onsodium-dodecylsulfate-polyacrylamide-electrophoresis.SurfaceIgwasneverpresent inatetramericform,asinserumIgMbutasmonomers (H 2 L 2 )• ThismonomericIgon pronephros lymphocyteshadaM.W.of220,000whileslgofthymocyteshadaM.W.of 260,000.Peripheralblood lymphocytescarriedbothforms.Furthermoreslgwaspresent onalllymphocytesasHLsubunits (M.W. 110,000).Thymocytes,apartfromHandL chains,showed2additionalcomponentsuponelectrophoresis,withM.W.'sof100,000 and35-40,000.Thelastcomponentwasnotobservedonpronephros lymphocytes.In goldfishslgofsplenocytesandthymocytesdifferinsolubilizationcharacteristics withnon-ionicdetergentsandinHchainelectrophoreticmobility.TheHchainsof splenocyteswerecomparabletomammalianychainswhereasthymocyteHchainsexpress54 vO r^ en ~" <r CN i n vO et) u a u u to m 00 o> 00 O co 0) 4-1 >, U O J3 0. o> J3 P. •H U <U CM m o m !>-4 et) •u tu et) o 3 •J dl O m < ^ cr. 1 Ö H r-l 3 ,Q O r-H 61) O c 3 1 m CN o o o 00 <T O o> A m CO o u r-4 et) J3 P. m a) C V o CO a) 4J tu •S •I-I u S w m 3 CO a) 4J >> o o •C P. VO 00 un 1 o> o p-i to 01 60 <u c 0 ct) l-l •u 0-t »o ^D o o VÛ r~- o er« A c tu r» a\ i—i I u oo vO o> o> 1 m \D o o r~ o> O o> A co s n a) ÖO •H 4-1 H •vi t» 60 O ?H • t i « g to s s> Ö 2- 1» Ö c/> W >-i H PO CJ M Bi < 4-> 3 « o u •u "e-3 Ö s. tu 4J rJ to s O « o co .ü en 00 H 00 O W J w H s ^—v o co H-> 3 03 o w co co •g •s 3 ,a o O V & Ö CO to S • t i co co ö s o co M SH s ö § V_' ö Û , u cd o O e et! a. u e u ej CO Si 01 •I-t M-i 3 r-H u 0 ö E co •tJ E O ÖJ ts 1-3 m r» a> — r, 0) 3 o ,0 #!-. CO PM O • H to U CM -e o o fc ö 'S & —/ e g SH •^ co o /-N ö s ö Hl S i J3 C •H co CO •ö O 60 oö r-H r-^ •i-t 60 CO •H r-l i-t CU 3 w i-J /-N .a ~55 edafastermobility (Warr,DeLuca&Marchalonis,1976). Furthermore,slgofsplenocytesdiffersfromserumIginadeficiencyof10,000dintheHchainofsplenocyte slg (Warr&Marchalonis,1977).TheHchainpeakofpronephrosslgwasverybroad comparedwiththesharpHchainpeakobtained fromthymocyteslg (Ruben,Warr,Decker &Marchalonis, 1977),Characterizationofslgofrainbowtroutsplenocytesshowed thepresenceof3majorcomponentswithM.W.'sofapproximately 100,000,65,000and 25,000.IncontrastthymocytescontainedseveralhighM.W.components (70-150,000) butlackedpeaksintheLchainregion (Yamaga,Etlinger&Kubo, 1977). Bluegillslg isquitesimilartoserum Ig,andM.W.'sofHchains isolated fromthymocytesis similartothatisolatedfromotherlymphoid tissue (Clem,McLean,Shankey&Cuchens, 1977). # I t canbeconcludedthatinfishnearlyall lymphocytescarryslgwhichispresentinamonomericformorasHLsubunits.However,thereissomeheterogeneity (bothquantitativeandqualitative)inslgamonglymphocytes fromdifferent lymphoidorgans. Hapten-cavviev effect Cellularco-operationduringanimmuneresponsebetweendifferent lymphocyte populationscanbestudiedusingthehaptencarriereffect.Ahaptenisasmall, initselfnon-antigenicmolecule (suchasDNP)whichiscovalentlycoupledtoa large"carrier"molecule,generallyaprotein.Thehapten-carriereffectbasically involvespreimmunizationwithacarrier,followedbyaboosterwiththehaptencarriercomplex.Thisscheduleresultsinanenhancedprimaryresponsetothehapten. Inmammals,TcellsreactwiththecarriermoietywhileBcellsrespondtothehapten. Hapten-carrierimmunizationwasusedinbrooklampreytoexplorelymphocyte heterogeneityatthelowestphylogenetic levelofthevertebrates.Carrierpriming didnotenhancethefollowinganti-haptenresponse (Fujii,Nakagawa&Murakawa, 1979b). Foranumberofteleoststhehapten-carriereffect nowhasbeendemonstrated usingtwobasicallydifferenttechniques.Afirsttechniqueinwhichthenumberof haptenbindingcellsisdeterminedhasbeenusedingoldfish.Twooreightdays aftercarrierpriming (HRBC)animalswereimmunizedwiththehaptentri-nitrophenol (TNP)conjugatedtoHRBC.TheTNP-bindingpronephros lymphocytes wereshown tobehaptenspecificsincepreincubationofsensitizedcellswithTNP-glycinecompletelyeliminatestheresponse.Ingoldfishkeptat24C,maximumTNPbindingactivityappearsatday8afterchallenge.Highdoseprimingisineffectiveingenerating helperactivity.Helpermemoryevokedbylowdosecarrierprimingisshortlived: TNP-HRBCchallenge8daysafterHRBCprimingdoesnotresultinananti-TNPresponse (Ruben,Warr,Decker&Marchalonis, 1977). Theotherapproachtodemonstratethehapten-carriereffect (titrationofhapten specificserumantibodies)wasfollowedinwinterflounder.Carrierpreimmunization withchickenglobulin (CG)orKLHwas followed3weeks laterbyimmunizationwiththe 56 haptensNIP(3-iodo-4-hydroxy-5-nitrophenyl aceticacid)andNNP(3,S-dinitro-4hydroxy-phenylaceticacid)covalently coupledtoCGorK1H.Antibody titreswere determinedbytheabilityofserumtoinactivate haptenated bacteriophages. Preimmunizationwiththecarrier enhancedtheantibodyresponsetothehaptenina specificway:aresponsetoNIP-CGcouldonlybedetected afterpreimmunizationwith CG,notafterpreimmunizationwithKLH(Stolen&Mäkelä, 197S,1976).Weiss&Avtalion (1977)preimmunizedcarpwitheithernativeBSA,methylatedBSAoracetylated BSAascarriers.Threeweeks lateranimalswere immunizedwiththehaptenpenicillin conjugatedtothecarrierinvarious epitope densities (Pen,-BSAandPen,--BSA).It was shownthat2factorswere importantinobtainingamaximal enhancementofthe primary anti-hapten response:a)preimmunizationwithamodified carriermolecule ratherthanitsnative formandb)alowhaptendensityonthehapten-carrier conjugate. Rubenetal. (1977)andWarretal.(1977)have attemptedtoseparate "carrierreactive"and"hapten-reactive" lymphocytepopulations usingthenylonwool column adherencemethod (Julius,Simpson&Herzenberg, 1973). Pronephrosandthymus cells ofgoldfish,whichwereprimedwithHRBCandchallengedwithTNP-HRBC,wereused. Hapten-reactive cellswere only foundinpronephros,notinthymus.Thesehaptenreactive cellswereretainedinthenylon-wool column.Thus,hapten-reactiveand carrier-reactivecells couldbephysically separatedbytheiradherencetonylonwool columns. • inconclusionitisevident thatcell-cell cooperationinhumoral immuneresponsesisdemonstratedforanumberofteleost fish indicating thatthereare at least2different lymphoidcellpopulations.Ontheotherhand thisphenomenonprobably doesnotyetoccuratthelevelofAgnatha. Cell surface receptors TheonlyreportonC,receptorsoncellsurfacesinfishdealswithafibroblastcell lineofgoldfish.Itappears thatthegoldfish fibroblasts haveareceptor formouse (AKR)C,butthefunctionofthis receptorisunknown (Ueki,Fukushima, Hyodoh&Kimoto, 1978). # A s farasweknownothingispublishedsofaraboutC,andFc receptors on fishlymphocytes. Mitogen response Inhighervertebrates,TandBlymphocytes canbedistinguishedbytheir in vitro responsetodifferentmitogens.Incontrasttoaparticular antigen,which stimulates onlyasmall fractionoflymphocytes,mitogens stimulate substantial partsoflymphocytepopulations non-specifically.After stimulation large lymphoblastsareformed, whichwillundergomitosisandfinally develop intoeffector cells.Inmammalsthe mitogensphytohaemagglutinin (PHA)andconcanavalianA (ConA)stimulatepredominantlyTcells;lipopolysaccharide (LPS)andpolyvinylpyrrolidone (PVP)onlyBcells. 57 BloodcellsofPacifichagfish ,synthesizeENAandproliferateinresponsetoPHA.Relative longincubationperiodsandhighPHAconcentrationarerequiredcomparedwithmammalian lymphocytecultures (Tam,Reddy,Karp&Hildemann, 1977). Peripheralbloodlymphocytes fromnursesharkrespondtoConA,butnottoPHA (Lopez,Sigel&Lee, 1974). SeparationonFicoll-Isopaquegradientsyielded2populationsoflymphocytesofwhichonerespondedtoPHAandConAandtheotherpopulationonlytoConA.Itwasconcludedthatsharkspossess lymphocytescapableof respondingtomitogenswhicharestimulatorsformammalianTcells. SinceitwaspossibletoinhibitPHAresponsive cellsbytheadditionofConAresponsivecellstheauthorssuggestthatnursesharkpossessedsuppressorcells (Sigel,Lee,McKinney&Lopez, 1978). Withintheteleost family,mostworkonmitogeninduced lymphocytetransformationhasbeencarriedoutwithrainbowtrout.Bogner&Ellis (1977)demonstrated that in vivo peripheralblood lymphocytesrespondtoPHA,ConAandLPSwiththe formationoflymphoblasts. In vitro, peripheralbloodlymphocytes couldbestimulated byPHA,ConA,LPSandPPD(Etlinger,Hodgins&Chiller,1975,1976a;Chilmonczyk, 1978a). SimultaneousexposuretobothLPSandPHAledtosignificanthigherstimulationsthanbyeachmitogenalone,suggesting thatthereare2differentsubpopulationsofperipheralblood lymphocytes (Chilmonczyk, 1978a). Rainbowtroutthymocytes respondtotheTcellmitogenConAbutnottotheBcellmitogenLPS.Leukocytes frompronephrosrespondtoLPSbutnottoConAandPPD,whilesplenocytescouldbe stimulatedbyLPS,PPDandConA (Etlingeretal., 1976a). Peripheralblood lymphocytesofsnappercouldbestimulatedbyPHA(McKinneyetal., 1976),Incontrasttotheclear-cutorgandistributionofmitogen responsiveness inrainbowtrout,bluegill lymphocytes frompronephros,thymusandspleencanbe stimulatedbyPHA,ConAandLPS(Cuchens,McLean&Clem, 1976). Morphological consequencesoflymphocyte transformationhavebeenstudied inrainbowtroutsplenocytes (Etlinger,Hodgins&Chiller, 1978).ConAinduced blastcellsarelargerandpossessalighter (May-Grünwald/Giemsa)stainingnucleus thanlymphocytes,haveahighercytoplasm-nucleus ratioandanincreasedamountof mitochondriaandroughendoplasmicreticulum (RER).Plasmacellsoccur infrequently inConAstimulated cellcultures.Blast cellmorphologyofLPSandPPDculturesis similartothosewithConA.LPSandPPDinducemitogenesisrevealedbythepresence ofabout 7% plasmacellsafter7daysofculture (Etlinger,Hodgins&Chiller, 1976b). ©Lymphocytesoffishrespond in vitro tomitogensbyblasttransformation.A differentorgandistributionforcellsrespondingtoT-andB-cellmitogens is foundinsomespecies. Do fish possess T and B lymphocytes? Intheliterature3different answershavebeengiventothequestionabove mentioneda)yes,theydo,b)no, onlyBcells,andc)no,onlyTcells. 58 a) Taking theabovementioneddataintoaccount,Marchalonisconcludedthatfish lymphocytescanbedividedinto2subsets,onewithT-likeproperties andtheother withB-likeproperties (Marchalonis,Warr &Ruben,1978;Warr &Marchalonis,1978) Themajorargument againstthisconclusion isthatinfish (andinlowervertebrates ingeneral)both"T"and"B"cellscarryslgwhereas inmammalsTcellsdonot.This argument iscounteredby statingthatmammalianTcellsdocarryslg. Infish,thymocyteslgdiffers fromserumIgandpronephros slg.Thymocyteslgcross-reactwith rabbitanti-Igserabecauseofthephylogenetic distancebetweenmammals andfish. Indeed,whenusingchickenantiserumagainst Fabfragmentsofserum Ig,thymocytes ofmanandmousecarrycross-reactingslg (Jones,Graves &Orlans,1976;Marchalonis, Warr,Bucana,Hoyer,Szenberg &Warner,1977;Szenberg,Marchalonis &Warner, 1977). Thereverseexperiment,goldfishanti-carp serum Igincubatedwithcarpthymocytes, shouldconsequentlyyieldnegativeresults. b) OntheotherhandMcKinneyetal. (1976)suggest thatnoheterogeneity exists infishlymphocytes.Infacttheystatethat fishdonotpossess Tlymphocytes.Their argumentsarethefollowing. 1)Organculturesofthymussynthesizeantibody. 2)Duringahumoral immuneresponse infishnoshiftfromIgMtoIgGoccurs.ThisshiftisstimulatedbyTcells inmammals (Katz&Benacerraf, 1972). 3)Althoughthehapten-carriereffecthasbeendemonstratedinfish,itremainstobeproventhatcarrierreactivecellsareTcellsor lymphocytesatall.4)Theassumptionthatevery fishlymphocytestimulatedbya mammalianTcellmitogen (PHA)isarealTcellispremature.Forinstance,blood cellsfromthetunicate, Ciona intestinalis, whichlacksathymusrespondtoPHA (Tarnetal., 1977). Furthermore,undercertaincircumstances,PHAcanstimulate mammalianBcells (Greaves,Owen&Raff, 1974). ThereforeMcKinneyet al. (1976)provisionally concludedthat fishlymphocytes actprincipallyasBcellsandthattheobservedTcellfunctions reflectmultipotentiality. c) Reciprocal transplantationofthymicprimordiabetweendiploid andtriploid amphibianembryos {Rana pipiens) suggestedthata)thymuslymphocytes arisewithin thethymus;b)virtuallyall lymphocytes arethymusderived (Turpen,Volpe&Cohen, 1973; 1975). Ifthisistrue forlowervertebrates ingeneral,fish lymphocytes shouldbeclassifiedasTcells. ThedifficultyinassessingTandBequivalents inlowervertebratescanbe illustratedbysummarizing relevantdataconcerningthemostprimitiveclassoffish: theAgnatha.Onmorphological groundtheseanimals lackadefinitethymus (Good, etal., 1966;Riviere,Cooper,Reddy&Hildemann, 1975); Allograftsarerejected (Perey,Finstad,Pollara&Good,1968;Hildemann&Thoenes, 1969);Peripheralblood lymphocytes respondtoPHA (Cooper,1971;Tarnet al., 1977); Hapten-carriereffectisabsent (Fujiietal.,1979b). Theanimalsrespondto (a limitedvarietyof)antigensbytheproductionofspecificantibody (Linthicium& Hildemann,1970;Fujiietal., 1979a); nomammaliantypeplasmacellswereobserved 59 (Goodet al., 1966). # A t thismoment itisimpossible toclassifyfishlymphocytes indefinite T andBcellsubsets,althoughdataformoreadvanced speciesaremoreconsistent. Moredataarerequiredonontogenyoflymphocytes,effectsofthymectomyand behaviourofseparated "T"and"B"cellsinreconstitutionexperiments.Until thenitispreferred tospeakintermsof functionalT-andB-likefish lymphocytes 60 CHAPTER7 FACTORSAFFECTINGTHEIMMUNERESPONSE Temperature Since fisharePoikilothermievertebrates,theambient temperaturewillinfluenceallmetabolicprocesses includingtheimmune response.Fromatheoretical viewpoint thisphenomenonoffers interestingpossibilities,e.g. dissociationof the immune response intodiscrete stepsbyamere variationinwater temperature. Thetemperature dependenceoftheimmune systemalsohassomepractical consequences. Non lymphoid defence Ithasbeenshownincarpthatphagocytosis occurredatarelative slow rate attemperatureswhichprevented antibody synthesis (seebelow) (Avtalionetal., 1973; Wojdani,Katz,Shahrabani &Avtalion, 1979).TherateofMS2 bacteriophage clearance fromthebloodofcarpandrainbowtrout decreaseswith lowering temperatures (O'Neill, 1980).Thesameeffectwasobservedinnurse sharkandlane snapper (Russell,Taylor&Sigel, 1976).Thecomplement systeminfish functions verywellat lowtemperatures (Chapter 2).Naturalagglutinins toSRBCand Salmonella typhosa inthegardisplayahigheractivityat4°Cthanat22°C.Inpaddlefish also "cold" agglutininswere found (Legier,Weinheimer,Acton,Dupree&Russell, 1971). Itis possible that"cold"agglutinins representacompensatory mechanismfortheimmunosuppressive effectoflowtemperatures infish (Bradshaw&Sigel,1969 ) . • Nonlymphoid defence systemsarerelative temperature independent. Cellular immunity InChapter5datahavebeenpresentedwhich indicate that allograft rejection isamanifestationofcellular immunity.Inanumberofpublications ithasbeen shownthat allograft rejectionisdelayedatlowtemperatures (Goss,1961;Stutzman, 1967;Botham,Grace&Manning, 1980). Hildemann (1957)studiedtheeffectof water temperatureonthemedian survival timeofallograftsingoldfish.Atall temperatures studiedaclear-cut secondary responsewere observed (Table 9 ) .Both firstsetandsecondsetallograft rejectionwas strongly temperature dependent. InMozambiquemouthbrooderthetemperature effectoncellular immunitywasmuch less pronounced (Table9)(Sailendri, 1973). Itwasfoundingoldfish thattherelationshipbetweenMSTandtemperaturewasnotlinearbutthatabreak occurred between 20and25C (Hildemann&Cooper, 1963). Similarobservationshavebeenmadeinamphibians (Cohen,1966)andreptiles (Borysenko, 1970). Grafted frogs (Macela&Romanovsky, 1969)andturtles (Borysenko, 1970),maintainedatlowtemperatures,reject allograftsinanaccelerated fashionwhentransferredtohighertemperatures during allograft rejection.Therefore antigenprocessingandrecognitionmusttakeplaceat lowtemperatures.Borysenko (1979)postulated thatatlowtemperaturesanearlybut post recognitionevent (cellproliferation?)isprimarily affectedwhileathigher 61 temperatureseffectorfunctionsarethelimiting factor.Ifthisholdstruefor fishremainstobeinvestigated. TABLE9 Influenceoftemperatureonallograftrejectioninteleostfish Median Survival Time (days) Temperature ( (°C) Mozambique mouthbrooder Goldf ish ' First-set Secondset 10 40.5 19.5 16 17 20.5 13.9 19 12.6 8.0 21 8.3 5.4 25 7.2 4.7 27 28 6.3 4.4 4.3 3.2 First-set 30 32 Second-set 9.4 N.D. 7.8 5.8 7.0 5.0 5.2 4.2 5.1 N.D. Data takenfromHildemann, 1957 (1)andSailendri,1973(2). N.D. =notdone. Humoral immunity Earlystudiesontheeffectoftemperatureonthehumoral immune responsesuggestedthatfishwerenotabletoproducecirculatingantibodybelow10C (reviewed inAvtalionetal., 1973).More recentreportsdemonstrated alsothatcertain species lackahumoralresponsebelow9-12C:IntheJapaneseeel anti-Vibrio anguillarum titreswereobtainedmorerapidlyathighertemperatureswithinthe15-23Crange. Noantibodyproductionwasdetectedat11°C(Muroga&Egusa, 1969). Carpkeptat 12Cdidnotproduce antibodies againstBSA(Avtalion, 1969a). Veryinterestingstudieshavebeenperformedontheimmuneresponsivenessof cold-water fish.Sablefish,ahabituantoftheNorthPacific,produced agglutinating antibodiesattemperaturesof5-8Cwithin1month afterinjectionofforeignerythrocytes (Ridgway,Hodgins&Klontz, 1966).IntheAntarctic teleost,theicefish, keptat2°Cneutralizing antibody couldbedetected42-56daysafter immunization withMS2bacteriophage (O'Neill,1979,1980).Itthereforeismoreappropriateto statethatthetemperature range overwhich antibodyproductioncantakeplaceis relatedtothenormalenvironmental temperature rangeofthespecies considered. Themostextensive studiesontheeffectoftemperatureonhumoral immunity havebeenperformedbyAvtalionandco-workers.Carpkeptat25°C (high temperature) produceagglutinatingantibodies againstBSAafteralagperiodof10days.Whenkept at12-14C (lowtemperature)noantibody couldbedetectedupto77daysafterimmunization.Whencarp,immunizedandsubsequently keptat14°Cfor35days,were 62 transferredto25°C,antibodiesweredetected 7days later.Animals immunizedand kept at25°Cfor8daysbeforetransferto 14Cproduceantibodies atthis lowtemperature (Avtalion, 1969a). Similarresultshavebeenobtainedwhenusing Aeromonas punctata asimmunizingagent (Avtalion,Wojdani,Malik &Shahrabani, 1973). Later studies showedthatatemperature sensitiveeventduringtheresponse,was situated betweenthe 3rdand4thdayafterprimary stimulation.Thiswas illustratedbythe factthatonlycarpkeptathightemperatures formorethan3days after immunization produce antibodies inthecold (Avtalion,Weiss &Moalem, 1976). Carpwereableto mountasecondary responseagainstBSAatlowtemperaturesprovidedthatpriming tookplaceat2S°C (Avtalion,1969b,1969c;Avatalion,Malik,Lefler &Katz, 1970). Animalswereprimedwiththe0-antigenof Salmonella abortus (OSA)athightemperaturesandtransferredto 12°Cbefore theappearanceofcirculating antibody.After a simultaneous immunizationwithOSAandBSA,onlyantibodies againstthebacterial antigenwereproduced.Thus,memory formationat lowtemperatureswas immunologically specific (Avtalionetal., 1973). Threedifferentapproacheshavebeenusedtodemonstrate thatthe functionof helpercellswasprimarily affectedby lowtemperatures. a)Carp,whichwereinjectedwithrabbitgammaglobulinasacarrier,before theirtransfer tolowtemperatures,were abletoproduce anti-hapten (penicillin)antibodies following immunizationwith thehapten-carrier conjugate inthe cold (Avtalionet al., 1976). b)AcetylatedBSA (AcBSA)doesnotevokeantibodyproductionincarp.AninjectionwithnativeBSA,given40daysafterAcBSApriming,givesrisetoa secondarytypeanti-BSAresponse.AcBSAhas lost itsabilitytostimulateantibodysynthesisbutretained itspotentialmemory formation (Weiss &Avtalion, 1977).Theanti-BSAresponse in Tilapia (hybridof T. aureus x T. nilotioa) keptatlowtemperatureswasofasecondary typewhenprimingwithAcBSA occurredathightemperatures (Avtalion,Wishkovsky &Katz, 1980). c)Penicillinconjugated toBSAat lowepitopedensity (PenrBSA)stimulatecarp forbothanti-haptenandanti-carrierantibodies (Avtalion &Milgrom, 1976). PreimmunizationwithBSAenhancedtheprimaryanti-haptenresponse atlowtemperatures (Weiss&Avtalion, 1977). Theoptimaltemperature forLPSstimulationofbluegillpronephros lymphocytes was 22C,while responses toPHAandConAwereoptimalat32°C (Cuchens &Clem, 1977).TheseresultsareconsistentwithAvtalion'shypothesis thatT-likecells requireahighertemperature thanB-likecells (Avtalion,Weiss,Moalem&Milgrom, 1975).However,studies inrainbowtroutrevealed thattheoptimal temperature for stimulationby PHA,ConA andLPSwasalways 28C (Chilmonczyk, 1978a). Incarpkeptat25°Cboth lowdose (0.01-0.1 mg/kg)andhighdose (10-50mg/kg) tolerancetoBSAcouldbe induced (Serero&Avtalion, 1978).At lowtemperatures, onlyhighdosetolerance couldbe induced (Avtalionetal., 1980). 63 OnbaseofthedatadiscussedaboveAvatalionet al. (1973)proposedamodel fortemperaturesensitivestagesduringthehumoral immuneresponse.Following primaryantigenic stimulation,theinitial stepsoftheresponsesuchasphagocytosis, primingandtolerance inductionarerelativetemperature insensitive.Thefirst temperaturesensitiveeventmightbecellularinteractionand/ordifferentiation. Cellularmultiplicationofmemorycells andantibodyformingcellsaretemperature insensitive inthismodel.However,theeffectorphaseofthehumoralresponse (antibodysynthesisandrelease)isagainarelativetemperaturesensitiveevent. • Bothcellularandhumoral immuneresponses offisharetemperaturedependent. Immuneresponsescantakeplacewithinthenormal temperature rangeofthe species.Therearestepsintheimmuneresponsedifferingintemperaturesensitivity. Fromthepracticalpointofviewthetemperaturedependence oftheimmuneresponseisimportantbecause ithasbeenshownthatseasonalvariations intheincidenceofinfectiousdiseases infisharecorrelatedwithchangesinwatertemperature (Besse,Levaditi,Guillon&deKinkelin,1965;Schaperclaus,1965;Roberts, 1975). Theoptimaltemperatures forgrowthandreplicationofinfectiousmicroorganismsvaries (Reichenbach-Klinke, 1976). Forinstancethegrowthrateof Aeromonas salmoniaida and A . hydrophila (causative agentoffurunculosis)was optimal atwatertemperaturesofabout 20°C (Groberg,McCoy,Pilcher &Fryer, 1978).Maximum mortalityinsalmonidsinfectedwiththecausativeagentofbacterialdisease, Corynebaeterium spp.occursintherangeof7-12°C (Sanders,Pilcher&Fryer,1978). Theoptimal temperature forthe -in vitro replicationofpathogenic rhabdoviruses specific forsalmonids is 14°C,forrelatedvirusesspecific forwarmwaterfishes itis20-22°C (Ahne, 1978). 9 Fromtheimmunologicalpointofview,animalsinlargescale fishcultureshould bekeptattheiroptimal temperature.Loweringthetemperaturewilldiminish orinhibittheimmune capacityoffishwhile thecircumstancesmightbecome favourable forcoldadaptedpathogenicmicro-organisms atthesametime. Stress The importanceofsocialfactorsinfishpopulationshasbeenunderestimated inthe firstreportsonfishimmunology.ThenegativeresultsofPapermasteret al. (1962)andGood&Papermaster (1964)inobtainingimmune responsesinAgnatha wereprobablycausedbypooranimalhusbandrysince laterinvestigators (Thoenes& Hildemann, 1969;Linthicium&Hildemann,1970)succeededindemonstrating antibody production. Fishundercrowdedconditionsproducepheromone-likecrowdingfactors (Pfeiffer, 1974).Thesecrowdingfactors inhibitgrowthandreproductionanddepresstheheart contractionrate (Pfuderer,Williams &Francis, 1974).Moreover,theimmuneresponse ofcrowdedblue gouramitoinfectiouspancreaticnecrosisviruswasdepressed.It 64 wasdemonstratedthatpheromone-likefactors,releasedincrowded fishpopulations, were reponsiblefortheobservedimmunosuppression (Perlmutter,Sarot,Yu,Filazzola & Seeley, 1973). Carpkeptundercrowdedconditionsshowedarelativelyhighsusceptibilitytoexperimentalinduced Aeromonas infections (Avtalionetal., 1973). Miller & Tripp (1979)studiedtheeffectofcaptivityontheimmune responseofthekillifish.Fishmaintainedatthelaboratoryfor1-2monthsshowedaloweranti-SRBC responsethanfreshlycapturedspecimens,whilenoeffectonallograftrejection wasobserved.Thesuppressive factor-specificforhumoral immuneresponses-was presentinserumsinceitcouldbetransferredfromlaboratory animalstofreshly captured fish.Atpresentitisclearthatphysiologicalandmorphologicaleffects ofstressinfisharetoalargeextenthomologouswith thoseinmammals (Mazeaud, Mazeaud&Donaldson,1977;Peters, 1979). #Stresscancause immunosuppression.Thisshouldbekeptinmind,notonlywhen studyingimmuneresponsesunderlaboratoryconditions,butalsowhendevising rearingsystemsforlargescale fishculture. Antibiotics and antimetabolites Antibioticsarefrequentlyusedinanimalhusbandryforthepreventionand controlofinfectiousdiseases.Dataontheimmunosuppressiveeffectofantibiotics inmammalsaregiveninappendicesVandVI.Reportsontheeffectsofantibioticsin fishdealwithcellular immunity.Inkillifishtheantibioticschloramphenicol, tetracycline,puromycinandcycloheximideprolongedtheMSTofallografts (Goss, 1961; Cooper, 1964). Furthermore,corticosteroids,nucleicacidandaminoacidanalogues andfolicacidanaloguesalsoprolongedallograftsurvival (Goss,1961;Hildemann& Cooper, 1963). Similarobservationshavebeenmadeingoldfish (Levy,1963;Stutzman, 1967). • Thelimitedexperimental dataavailable todaysuggestthatantibioticscan exertimmunosuppressiveeffectsinfish. Environmental pollution and irradiation Althoughimmunosuppressive effectsofenvironmentalpollutantsinmammalsand birdsarewelldocumented (Vos,1977;Vos,Faith&Luster,1980)littleisknown abouteffectsofthesecompoundsinfish.IthasbeenobservedthatDDTcansuppress bothhumoralandcellularimmune responsesingoldfish (Zeeman&Brindley,197S, 1976, 1979)whenusedindoseswhichareimmunosuppressiveinmammalsandbirds (Vos, 1977). Amarkedreductioninthenumberoflymphocytesinthespleenofguppyandbrown troutwasobservedafterexposuretoDDT(Walsh&Ribelin,1975). Zincappearedto suppresstheimmuneresponseofzebrafishagainst Proteus vulgaris butnotagainst infectiouspancreaticnecrosisvirus (Sarot&Perlmutter, 1976). Fewreportsexistdealingwitheffectsofradiationontheimmunesystemof fish.Severeatrophyinkidney,spleenandthymuswasfoundinchannelcatfish 65 A careful use of t h i s drug i s recommended since oxyTC can exert immunosuppressive effects during a primary response. 78 SAMENVATTING Dit proefschrift behandelt enkele aspecten van het c e l l u l a i r e en humoral immuunsysteem van karperachtige vissen. In appendix I wordt de ontwikkeling van het c e l l u l a i r e en humorale immuunsysteem b i j de prachtbarbeel (Barbus aonohonius) beschreven. In 3-4 maanden oude dieren kon een humorale anti-schape rode bloedcellen (SRBC) reactie worden aangetoond, maar de hoogte van de r e a c t i e was lager dan in 9 maanden oude volwassen dieren (90 en 700 plaque vormende cellen(PVC)/10 w i t t e cellen, r e s p e c t i e v e l i j k ) . Cellulaire immuniteit werd onderzocht met de schubtransplantatie techniek. Tussen 6 en 9 maanden oude dieren bestond geen signifikant verschil in de gemiddelde afs t o t i n g s t i j d van allogeen getransplanteerde schubben (respectievelijk 8 en 8.3 dagen). Uit deze experimenten kan de conclusie worden getrokken dat b i j 3 t o t 4 maanden oude dieren het vermogen om op SRBC te reageren aanwezig i s , maar dat het humorale immuunsysteem pas 5-6 maanden l a t e r volgroeid i s . Cellulaire immuniteit b e r e i k t het volwassen niveau na 6 maanden of eerder. In het vervolg van het onderzoek werd om een aantal redenen de karper (Cyprinus aarpio') gekozen als proefdier. Allereerst moest de plaque t e s t van Jerne, waarmee het aantal antilichaam-producerende cellen kan worden bepaald, worden aangepast voor het werk met de karper (appendix I I ) . Het bleek dat serum van de brasem (Abramis brama) een betrouwbaarder complement bron vormde dan allogeen karper serum. Gebruik makend van de plaque t e s t werd de kinetiek van de anti-SRBC respons onderzocht (appendix I I I ) . Het bleek dat b i j de karper de n i e r (pro- en mesonephros) een belangrijk antilichaam-producerend orgaan i s . De milt droeg slechts voor 5% aan het t o t a l e aantal PVC b i j . Wanneer karpers b i j hoge temperaturen gehouden werden (2024 C) vertoonden zij een k a r a k t e r i s t i e k e primaire en secundaire respons. Bij lagere temperaturen (10-18 C) wordt de piek van de primaire PVC respons l a t e r b e r e i k t , maar de hoogte van de respons b l i j f t g e l i j k . De r e l a t i e tussen de temperatuur en het t i j d s t i p waarop de piek-respons bereikt wordt, suggereert dat e r b i j de karper tenminste 2 stappen in de immuunrespons zijn met een verschillende temperatuurgevoeligheid. De k a r a k t e r i s t i e k e eigenschappen van een secundaire respons verdwijnen geleidelijk b i j lagere temperaturen. De vorming van immunologisch geheugen zou daarom ook temperatuur afhankelijk kunnen zijn. De invloed van antigeen dosering en de route van antigeen toediening op het ontstaan van immunologisch geheugen werd onderzocht in appendix IV. Immunisatie met een lage antigeen dosering toegediend langs de intramusculaire weg was optimaal voor de vorming van immunologisch geheugen. Dit vermogen om een secundaire respons op te wekken was specifiek voor het antigeen dat gebruikt werd b i j de primaire immunisatie, en bleef gedurende ten minste 10 maanden op een hoog niveau. In appendix V en VI werd het effect van het antibioticum Oxytetracycline (oxyTC) 79 op het immuunsysteem van de karper onderzocht. Het voeren van oxyTC had geen effect op de a f s t o t i n g van allogeen getransplanteerde schubben,, maar in dieren die met oxyTC werden ingespoten was de a f s t o t i n g s t i j d signifikant verlengd van 8.5 naar 11-20 dagen. Het remmend effect van oxyTC op de humorale immuun respons kon worden aangetoond op het niveau van antigeen bindende én antilichaamproducerende cellen. Gedurende een primaire respons werden de PVC aantallen teruggebracht t o t 5% van normaal. Secundaire responsen werden n i e t signifikant geremd door oxyTC. Een zeer s e l e c t i e f gebruik van dit antibioticum wordt aanbevolen omdat het onder bepaalde omstandigheden immunosuppressief kan werken. 80 CURRICULUM VITAE Ger Rijkers werd op 13 oktober 1952 als Gerrit Tjalling Rijkers te Zeelst (N.Br.) geboren. Het voorbereidend wetenschappelijk onderwijs werd gevolgd aan het Peelland College (voorheen Pius XII College) te Deurne alwaar in 19 71 het diploma Atheneum B werd behaald. In dat zelfde j a a r werd de studie biologie aangevangen, de p l a a t s i n g s commissie bepaalde dat d i t aan de Landbouwhogeschool te Wageningen zou z i j n . Het ingenieursexamen in de (cel)biologie werd in a p r i l 1977 afgelegd, met moleculaire biologie en celbiologie als hoofdvakken en plantkunde a l s bijvak. Op 11 j u l i 1977 werd een begin gemaakt met een promotieonderzoek aan de afdeling Experimentele Diermorfologie & Celbiologie onder (bege)leiding van Prof. Dr. J . F . Jongkind en Dr. W.B. van Muiswinkel. Dit onderzoek werd mogelijk gemaakt door een 3-jarig promotie-assistentschap van de Landbouwhogeschool. Het betreffende project (000.772) had als t i t e l : "De bouw en functie van het immuunsysteem b i j de karper (Cyprinus ecœpio)". In de week van 11 j u l i 1980 werd het manuscript van d i t proefs c h r i f t b i j de drukker ingeleverd. Vanaf half augustus 1980 i s h i j werkzaam in de klinische immunologie aan het Wilhelmina Kinderziekenhuis b i j Dr. B.J.M. Zegers te Utrecht. 81 Amend,D.F. &Fender,U.L. ijy/oj.upuiRe UJ.uuvmc aciumo-iuuuun^/ *^.j.,,.^..^ ™ „ „„.. hyperosmoticsolutions:amodelforvaccinating fish.Science,192,793-794. Anderson,D.P.(1974).Fishimmunology.T.F.H.Publ.Neptune,239pp. Anderson,D.P.(1978).Passivehemolyticplaqueassayasameansfordetectingantibody producingcellsinrainbowtroutimmunizedwiththe0-antigenofentericredmouth bacteria.Thesis,UniversityofMaryland. Anderson,D.P.,Roberson,B.S.&Dixon,O.W.(1979a).Plaque-formingcellsandhumoral antibodyinrainbowtrout (Salmo gaivdneri) inducedbyimmersionina Yersinia vuekevi 0-antigenpreparation.J.Fish.Res.Bd-Canada,36,636-639. 83 DANKWOORD Opdezeplaatswilde ikdevolgendepersonenbedankendie,iederophuneigen wijze,aanhettotstandkomenvanditproefschrifthebbenbijgedragen: Anje,Anke,Arie,Cor,Dave,Egbert,Fred,Gerd,Gerda,Hans,Hans,Hans,Hans, Hans,Henk,Henry,Huub,Jan,Jan,Jan,Johan,Johan,Joop,Lidia,Lily,Lucy, Margaret,Margriet,Marten,Matthew,Mees,Mike,Nand,Nel,Nico,Paul,Piet, Remmelt,Rie,Riky,Rob,Sietze,Sytze,Trees,Willy,Wim,Wim,Wim,Wim,Wouter, Anderson,D.P.,Roberson,B.S.&Dixon,O.W. (1979b).Cellularimmuneresponsein rainbowtrout, Salmo gairdneri, Richardsonto Yersinia ruckeri O-antigenmonitoredbythepassivehaemolyticplaqueassaytest.J.FishDis.2,169-178. Anderson,D.P.,Roberson,B.S.&Dixon,O.W. (1979c).Inductionofantibody-producing cellsinrainbowtrout, Salmo gairdnevi Richardson;byflushexposure.J.Fish Biol.15,317-322. Anderson,D.P.,Dixon,O.W. &Roberson,B.S. (1979d).Kineticsoftheprimaryimmune responseinrainbowtroutafterflushexposureto Yersinia ruckeri O-antigen. Dev.Comp.Immunol.3,739-744. Andreas,E.M.,Richter,R.F.,Hädge,D.&Ambrosius,H. (1975).Strukturelleund immunochemischeUntersuchungenamImmunoglobulindesKarpfens (Cyprinus II.AnalysederUntereinheiten.Actabiol.med.germ.34,1407-1415. Antipa,R. (1976).Fieldtestingofinjected Vibrio anguillarwn Pacificsalmon.J. Fish.Res.BoardCan.33,1291-1296. carpio L.) bacterinsinpen-reared Antipa,R.&Amend,D.F. (1977).ImmunizationofPacificsalmon:comparisonofintraperitonealinjectionandhyperosmotic infiltrationof Vibrio anguillarwn and Aeromonas salmonioida bacterins.J.Fish.Res.BoardCan.34,203-208. Antipa,R.,Gould,R.&Amend,D.F. (1980). Vibrio anguillarwn vaccinationofsockeye salmon Oncorhynchus nevka (Walbaum)bydirectandhyperosmoticimmersion. J.FishDis.3,161-165. Avtalion,R.R. (1969a).Influencedelatempératureambiantesurlaproductiondes anticorpschezlacarpe.Verh.Internat.Verein.Limnol.17,630-635. Avtalion,R.R. (1969b).Secondaryresponseandimmunologicalmemory incarp (Cyprinus carpio) immunizedagainstbovineserumalbumin.IsraelJ.med.Sei.5,441-442. Avtalion,R.R. (1969c).Temperatureeffectonantibodyproductionandimmunological memory,incarp (Cyprinus carpio)' immunizedagainstbovineserumalbumin (BSA). Immunology,17,927. Avtalion,R.R.&Milgrom,L. (1976).Regulatoryeffectoftemperatureandantigen uponimmunityinectothermicvertebrates.I.Influenceofhaptendensityonthe immunologicalandserologicalpropertiesofpenicilloyl-carrierconjugates. Immunology,31,589-594. Avtalion,R.R.,Weiss,E.&Moalem,T. (1976).Regulatoryeffectsoftemperatureupon immunityinectothermicvertebrates.In:Comparative Immunology (Ed.by J.J.Marchalonis).BlackwellScientificPublications,Oxford,p.227-238. Avtalion,R.R.,Wishkovsky,A.&Katz,D. (1980). Regulatoryeffectoftemperature onspecificsuppressionandenhancementofthehumoralresponseinfish.In: PhylogenyofImmunologicalMemory (Ed.byM.J.Manning)Elsevier/North-Holland, Amsterdam,p.113-121. Avtalion,R.R.,Malik,Z.,LeflerE.&Katz,E. (1970).Temperatureeffectonimmune resistanceoffishtopathogens.Bamidgeh,22,33-38. Avtalion,R.R.,Weis,E.,Moalem,T.&Milgrom,L. (1975).Evidenceforcooperation ofTandBcellsinfish.IsraelJ.Med.Sei. 11,1385. Avtalion,R.R.,Wojdani,A.,Malik,Z.,Shahrabani,R.&Duczyminer,M. (1973).Influenceofenvironmentaltemperatureontheimmuneresponseinfish.Curr.Top. Microbiol. Immunol.61,1-35. Baker,P.J., Stashak,P.W.,Amsbaugh,D.F.,Prescott,B.&Barth,R.F. (1970). Evidencefortheexistenceoftwofunctionallydistincttypesofcellswhich regulatetheantibodyresponsetotypeIIIpneumococcalpolysaccharide. J.Immunol.105,1581-1583. Baldo,B.A. &Fletcher,T.C. (1973).C-reactiveprotein-likeprecipitinsinplaice. Nature,246,145-146. 84 Barber,D.L.&Westermann,J.E.M. (1975).Morphologicalandhistochemical studieson aPAS-positivegranularleucocyteinbloodandconnectivetissuesof Catostomus oommersonnii Lacépêde (Teleostei:Pisces).Amer.J.Anat.142,205-220. Barber,D.L. &Westermann,J.E.M. (1978).Occurenceoftheperiodicacid-Schiff positivegranularleucocyte (PAS-GL)insomefishesand itssignificance. J.FishBiol.12,35-43. Beasley,A.R.,Sigel,M.M.&Clem,L.W. (1966).Latentinfectioninmarinefishcell tissuecultures.Proc.Soc.exp.Biol.Med. 121,1169-1174. Becker,C D . &Fujihara,M.P. (1978).Thebacterialpathogen Flexibacter aolumnavis anditsepizootiologyamongColumbiariverfish.Areviewandsynthesis.Amer. Fish.Soc.,Washington,92pp. Benner,R. (1975).Antibodyformationinmousebonemarrow.Thesis,Univ.of Rotterdam,44pp. Besse,P.,Levadati,J.C.,Guillon,J.C.&deKinkelin,P. (1965).Occurenceofviral diseasesintherainbowtrouthatcheriesinFrance,Firsthistopathological results.Ann.N.Y.Acad.Sei.126,543-546. Biozzi,G.,Stiffel,C , Mouton,D.,Liacopoulos-Briot,M.,Decreusefond,C.and Bouthillier,Y. (1966).Etudeduphénomènede1'immunocytoadhérenceaucourse del'immunisation.Ann.Inst.Pasteur,Suppl.3,1-32. Bogner,K.H.&Ellis,A.E. (1977).Propertiesandfunctionsoflymphocytesandlymphoidtissuesinteleostfish.In:ContributionstotheHistopathologyof Fishes (Ed.byH.H.Reichenbach-Klinke).GustavFisherVerlag,Stuttgart,p.59-72. Borysenko,M. (1970).TransplantationimmunityinReptilia.Transplant.Proc.3, 299-306. Borysenko,M. (1979).Evolutionoflymphocytesandvertebratealloimmunereactivity. Transplant.Proc.11,1123-1130. Borysenko,M.&Hildemann,W.H. (1969).Scale (skin)allograftrejectionintheprimitiveteleost, Osteoglossum bioirrhosum. Transplantation,8,403-411. Borysenko,M.&Hildemann,W.H. (1970).Reactionstoskinallograftsinthehornshark, Heterodontis francisai. Transplantation,10,545-557. Botham,J.W.,Grace,M.F.&Manning,M.J. (1980).Ontogenyoffirstsetandsecondset alloimmunereactivity infishes.In:PhylogenyofImmunologicalMemory (Ed.by M.J.Manning).Elsevier/North-Holland,Amsterdam,p.83-92. Braaten,B.A.&Hodgins,H.O. (1976).Protectionofsteelheadtrout {Salmo gairdneri) againstvibriosiswithalivinglow-virulencestrainof Vibrio anguillarum. J.Fish.Res.BoardCan.33,845-847. Bradshaw,C M . &Sigel,M.M. (1969).Coldagglutinins inaprimitivefish {Lepisosteus platyrhineus). thegar Fed.Proc.28, 819. Bradshaw,C M . ,Clem,L.W.&Sigel,M.M. (1969).Immunologicandimmunochemical studies onthegar, Lepisosteus platyrhineus. I.Immuneresponsesandcharacterization ofantibody.J. Immunol.103,496-504. Bradshaw,C M . ,Richard,A.S.&Sigel,M.M. (1971).IgMantibodies infishmucus.Proc. Soc.Exp.Biol.Med. 136,1122-1124. Bradshaw,C M . ,Clem,L.W.&Sigel,M.M. (1971).Immunologicandimmunochemicalstudies onthegar, Lepisosteus platyrhineus. II.Purificationandcharacterizationof immunoglobulin.J. Immunol.106,1480-1487. Bullock,W.L. (1963).Intestinalhistologyofsomesalmonidfisheswithparticular referencetothehistopathologyof Aaantooephalon infections.J.Morph. 112,23-43. Busch,R.A. (1978).Entericredmouthdisease (Hagermanstrain).MarineFish.Rev. 40,42-51. Carton,Y. (1973).Laréponseimmunitairechezlesagnathesetlespoissons.Structuredesimmunoglobulines.Ann.Biol.12,139-184. 85 Chiller,J.M.,Hodgins,H.O.,&Weiser,R.S. (1969).Antibodyresponseinrainbow trout [Salmo gaivdnerv). II.Studiesofthekineticsofdevelopmentofantibodyproducingcellsandoncomplementandnaturalhemolysin.J.Immunol.102,12021207. Chiller,J.M.,Hodgins,H.O.,Chambers,V.C.&Weiser,R.S. (1969).Antibodyresponse inrainbowtrout (Salmo gairdneri). I.Immunocompetent cellsinthespleenand anteriorkidney.J. Immunol.102,1193. Chilmonczyk,S. (1977).Stimulationsspécifiquesdeslymphocytesdestruitesarc-encielrésistancesàlaSHV.Bull.Off.int.Epiz.87,395-396. Chilmonczyk,C. (1978a). In vitro stimulationbymitogensofperipheralbloodlymphocytesfromrainbowtrout {Salmo gairdneri). Annalesd'Immul.129,3-12. Chilmonczyk,S. (1978b).StimulationspécifiquedeslymphocytesdeTruitesArc-en-ciel (Salmo gairdneri) résistancesàlaSepticémieHémorragiqueVirale.C R . Acad.Sei. 287,387-389. Cisar,J.O. &Fryer,J.L. (1974).Characterizationof anti-Aeromonas antibodiesfromcohosalmon.Infect.Immun.9,236-243. salmonicida Clarke,A.E. &Knox,R.B. (1979).Plantsandimmunity.Dev.Comp.Immunol.3,571-589. Clem,L.W. (1970).Functionalaspectsoffishantibodies.Transplant.Proc.2,260-262. Clem,L.W. (1971).Phylogenyofimmunoglobulinstructureandfunction.IV.Immunoglobulinsofthegiantgrouper, Epinephelus itaira. J.Biol.Chem.246,9-18. Clem,L.W.&Sigel,M.M. (1963).Comparative immunochemicalandimmunologicalreactions inmarinefisheswithsoluble,viral,andbacterialantigens.Fed.Proc.23,1138Clem,L.W. &Sigel,M.M. (1965).Antibodyresponseoflowervertebratestobovine serumalbumin.Fed.Proc.24,504. Clem,L.W. &Sigel,M.M. (1966). Immunologicalandimmunochemical studiesonholostean andmarineteleostfishesimmunizedwithbovineserumalbumin.In:Phylogenyof Immunity (Ed.byR.T.Smith.P.A.MiescherandR.A. Good).Univ.FloridaPress, Gainesville,p.209-217. Clem,L.W. &Small,P.A. (1967).PhylogenyofimmunoglobulinstructureandfunctionI. Immunoglobulinsofthelemonshark.J. exp.Med. 125,893-920. Clem,L.W. &Small,P.A. (1968).ValenceofteleostIgMantibodytoDNP.Fed.Proc. 27,684. Clem,L.W. &Leslie,G.A. (1969).Phylogenyofimmunoglobulinstructureandfunction. In:ImmunologyandDevelopment (Ed.byM.Adinolfi).Spastics Int.Med.Publ., London,62-88. Clem,L.W. &Small,P.A. (1970).Phylogenyofimmunoglobulinstructureandfunction V.Valencesandassociationconstantsofteleostantibodiestoahaptenicdeterminant.J. exp.Med. 132,385-400. Clem,L.W.,DeBoutaud,F.&Sigel,M.M. (1967).Phylogenyofimmunoglobulin structure andfunctionII.Immunoglobulinsofthenurseshark.J. Immunol.99,1226-1235. Clem,L.W.,Klapper,D.G. &Small,P.A. (1969).Half-lives,bodydistributionand interrelationshipsof 19Sand7SIgMofsharks.Fed.Proc.28,819. Clem,L.W.,McLean,W.E.&Shankey,V. (1975).Quantitativeandqualitativeaspectsof theantibodylibraryofsharks.Adv.exp.Med.Biol.64,231-239. Clem,L.W.,McLean,W.E.,Shankey,V.T.&Cuchens,M.A. (1977).Phylogenyoflymphocyte heterogeneity I.Membrane immunoglobulinsofteleostlymphocytes.Dev.Comp.Immunol. 1,105-118. Clerx,J.P.M. (1978).Studiesonpikefryrhabdovirusandtheimmunoglobulinofpike (Esox lucius). Thesis,Utrecht. 86 Clerx,J.P.M.,Castel,A.,Bol,J.F. &Gerwig,G.J. (1980).Isolationandcharacterizationoftheimmunoglobulinofpike {Esox luaius L.).Vet.Immunol.Immunopathol.1,125-144. Cohen,N. (1966).Tissuetransplantation immunityintheadultnewt, Diemiatylus virideseens III.TheeffectsofX-radiationandtemperatureontheallograft reaction.J.exp.Zool.163,231-240. Cooper,A.J. (1971).Ammocetelymphoidcellpopulations in vitro. In:FourthLeukocyte CultureConference (Ed.byO.R.Mclntyre)Appleton-Century-Crofts,NewYork, p.137-146. Cooper,E.L. (1964).TheeffectofantibioticsandX-radiation onthesurvivalof scalehomograftsin Fundulus heteroclitus. Transplantation,2,2-20. Cooper,E.L. (1976).Comparative Immunology.Prentice-Hall Inc.,EnglewoodCliffs, 338pp. Corbel,M.J. (1975).Theimmuneresponseinfish:areview.J.FishBiol.7,539-563. Cosgrove,G.E.,Blaylock,B.G.,Ulrikson,G.V. &Cohan,P.H. (1975).Radiation-induced hematopoietic lesionsinfish.In:ThePathologyofFishes (Ed.byW.E.Ribelin andG.Migaki)Univ.WinconsinPress,Madison,p.463-476. Cuchens,M.A.&Clem,L.W. (1977).PhylogenyoflymphocyteheterogeneityII. Differential effectsoftemperatureonfishT-likeandB-likecells.Cell. Immunol.34,219-227. Cuchens,M.,McLean,E.&Clem,L.W. (1976).Lymphocyteheterogeneity infishand reptiles.In:PhylogenyofThymusandBoneMarrow-BursaCells (Ed.by R.K.Wright&E.L.Cooper)p.205-213.Elsevier/North-HoilandBiomedicalPress, Amsterdam. Cushing,J.E. (1945a).Acomparativestudyofcomplement I.Thespecific inactiviation ofthecomponents.J. Immunol.50,61-74. Cushing,J.E. (1945b).Acomparative studyofcomplement II.Theinteractionofcomponentsofdifferent species.J. Immunol.50,75-89. Cushing,J.E. (1970).Immunologyoffish.In:FishPhysiology IV (Ed.byW.S.Hoar andD.J.Randall)AcademicPress,NewYork,p.465-500. Davina,J.H.M.,Rijkers,G.T.,Rombout,J.H.W.M.,Timmermans,L.P.M.&vanMuiswinkel, W.B. (1979).Lymphoidandnon-lymphoidcellsintheintestineofcyprinidfish. In:DevelopmentandDifferentiationofVertebrateLymphocytes (Ed.byJ.D.Horton)Elsevier/North-Holland,Amsterdam,p.129-140. Day,N.K.B.,Gewürz,H.,Johannsen,R.,Finstad,J. &Good,R.A. (1970).Complement andcomplement-like activityinlowervertebratesandinvertebrates. J. exp.Med. 132,941-950. DeLuca,D.,Warr,G.W. &Marchalonis,J.J. (1978).Phylogeneticoriginsofimmune recognition:lymphocytesurfaceimmunoglobulinsandantigenbinding inthegenus Carassius (Teleostei). Eur.J. Immunol.8,25-530. Dennert,G.&Tucker,D.F. (1972).SelectiveprimingofTcellsbychemicallyaltered cellantigens.J.exp.Med. 136,656-661. Desai,P.R. &Springer,G.F. (1972).Eelserumanti-humanblood-groupH(0)protein. Meth.Enzymol.28,383-388. Dorson,M. (1972).Somecharacteristicsofantibodies intheprimaryimmuneresponse ofrainbowtrout Salmo gairdneri. Symp.zool.Soc.Lond.30,129-140. Dreyer,N.B.&King,J.W. (1948).Anaphylaxis inthefish.J. Immunol.60,277-282. Egidius,E.C.&Andersen,K. (1979).Bath-immunization -apracticalandnon-stressingmethodofvaccinatingseafarmedrainbowtrout Salmo gairdneri Richardsonagainstvibriosis.J.FishDis.2,405-410. 37 Ellis,A.E. (1976).Leucocytesandrelatedcellsintheplaice Pleuroneates J. FishBiol.8,143-156. platessa. Ellis,A.E. (1977a).Theleukocytesoffish:areview.J.FishBiol.11,453-491. Ellis,A.E. (1977b).Ontogenyoftheimmuneresponsein Salmo salar. Histogenesisof thelymphoidorgansandappearanceofmembrane immunoglobulinandmixed leucocyte reactivity.In:Developmental Immunobiology (Ed.byJ.B.SolomonandJ.D.Horton) Elsevier/North-HollandBiomedicalPress,Amsterdam,p.225-231. Ellis,A.E.&deSousa,M. (1974).Phylogenyofthelymphoidsystem I.A studyofthe fateofcirculating lymphocytesinplaice.Eur.J. Immunol.4,338-343. Ellis,A.E.&Parkhouse,R.M.E. (1975).Surfaceimmunoglobulinsonthelymphocytesof theskate Raja naevus. Eur.J. Immunol.5,726-728. Ellis,A.E.,Munroe,A.L.S.&Roberts,R.J. (1976).DefencemechanismsinfishI.A studyofthephagocyticsystemandthefateofintraperitoneally injectedparticulatematerial intheplaice (Pleuroneates platessa L.). J.FishBiol.8,67-78. Emmrich,F.,Richter,R.F.&Ambrosius,H. (1975).Immunoglobulindeterminantsonthe surfaceoflymphoidcellsofcarps (Cyprinus aarpio). Eur.J. Immunol.5,76-78. Engle,R.L.,Woods,K.R.,Paulsen,E.C.&Pert,J.H. (1958).Plasmacellsandserum proteinsinmarinefish.Proc.Soc.exp.Biol.Med.98,905-909. Etlinger,H.M.,Hodgins,H.O.&Chiller,J.M. (1975).Propertiesofrainbowtrout lymphocytes:mitogenicstimulation,surfaceIgandmixedleukocytereaction. Fed.Proc.34,966. Etlinger,H.M.,Hodgins,H.O.&Chiller,J.M. (1976a).Evolutionofthelymphoid systemI.Evidenceforlymphocyteheterogeneity inrainbowtroutrevealedbythe organdistributionofmitogenicresponses.J. Immunol.116,1547-1553. Etlinger,H.M.,Hodgins,H.O.&Chiller,J.M. (1976b).Characterizationoflymphocytes inaprimitiveteleost, Salmo gairdneri. In:PhylogenyofThymusandBoneMarrow -BursaCells (Ed.byR.K.WrightandE.L.Cooper). Elsevier/North-Holland BiomedicalPress,Amsterdam,p.83-91. Etlinger,H.M.,Hodgins,H.O.&Chiller,J.M. (1977).EvolutionofthelymphoidsystemII.Evidenceforimmunoglobulindeterminantsonallrainbowtroutlymphocytes anddemonstrationofmixed leukocytereaction.Eur.J. Immunol.7,881-887. Etlinger,H.M.,Hodgins,H.O.&Chiller,J.M. (1978).EvolutionofthelymphoidsystemIII.Morphologicalandfunctionalconsequencesofmitogenicstimulationof rainbowtroutlymphocytes.Dev.Comp.Immunol.2,263-276. Evelyn,T.P.T. (1977). Immunizationofsalmonids.Proc.Int.Symp.Dis.Cult.Salmonid« Tavolek,Washington,p.161-176. Everhart,D.L.&Shefner,A.M. (1966).Specificityoffishantibody.J. Immunol.97, 231-234. Fänge,R. (1966).Comparativeaspectsofexcretoryandlymphoidtissue.In:Phylogeny ofImmunity (Ed.byR.J.Smith,P.A.MiescherandR.A. Good).Univ.FloridaPress, Gainsville,p.141-145. Fänge,R. (1968).Theformationofeosinophilicgranulocytesintheeosophageal lymphomyeoloidtissueintheelasmobranchs.ActaZool. (Stockholm),49,155-161. Feinstein,A.&Munn,E.A. (1969).Conformationofthefreeandantigen-bound IgM antibodymolecules.Nature,224,1307-1309. Ferguson,H.W. (1975).Phagocytosisbytheendocardialliningcellsoftheatriumof plaice {Pleuroneates platessa]. J.Comp.Path.85,561-569. Ferguson,H.W. (1976a).Therelationshipbetweenellipsoidsandmelano-macrophage centresinthespleenofturbot (Scopthalmus maximus). J.Comp.Path.86,377-380. Ferguson,H.W. (1976b).Theultrastructureofplaice (Pleuroneates J.FishBiol.8,139-142. platessa) leucocytes Ferren,F.A. (1967).Roleofthespleenintheimmuneresponseofteleostsandelasmobranchs.J.FloridaMed.Ass.54,434-437. Fidler,J.E.,Clem,L.W.&Small,P.A. (1969).Immunoglobulinsynthesis inneonatal nurseshark (Ginglymostoma cirratum). Comp.Biochem.Physiol.31,365-371. Fiebig,H.&Ambrosius,H. (1975).Strukturelleundimmunochemische Untersuchungen amImmunglobulindesKarpfens (Cyprinus earpio L.)III.ValenzundAffinitätvon Anti-Dinitrophenyl-Antikörpern.Actabiol.med.germ.34,1681-1695. Fiebig,H.&Ambrosius,H. (1976).Cellsurfaceimmunoglobulinoflymphocytes inlower vertebrates.In:PhylogenyofThymusandBoneMarrow-BursaCells (Ed.byR.K. WrightandE.L.Cooper).Elsevier/North-HollandBiomedical Press,Amsterdam, p.195-203. Fiebig,H.&Ambrosius,H. (1977).Untersuchungen zurRegulationder IgM=ImmunantwortI.VeränderungenderAffinitätvonKarpfen-anti-DNP-Antikörpern imVerlauf der Immunisierung inAbhängigkeitvonderAntigendosis.Actabiol.med.germ. 36,79-86. Fiebig,H.,Gruhn,R.&Ambrosius,H. (1977).StudiesonthecontrolofIgMantibody synthesis III.Preferential formationofanti-DNP-antibodies ofhighfunctional affinityinthecourseoftheimmuneresponse incarp.Immunochemistry,14, 721-726. Fiebig,H.,Scherbaum,I.&Ambrosius,H. (1977).Zelloberflächenimmunoglobulin von LymphozytendesKarpfens (Cyprinus carpio L.). Actabiol.med.germ.36, 1167-1177. Fiebig,H.,Gruhn,R.,Scherbaum,I.&Ambrosius,H. (1979).Untersuchungen zurRegulationderIgM-ImmunantwortIV.EinflussdesHapten:Carrier-Verhältnissesund derNaturdesCarriersaufdiewahreundfunktionelleAffinitätderAnti-DNPAntikörperbeimKarpfen.Actabiol.med.germ.38,615-1625. Fiebig,H.,Hörnig,S.,Scherbaum,I.&Ambrosius,H. (1979).StudiesontheregulationofIgMresponseVII.ChangesintheaffinityofantibodiesandcellreceptorsafterimmunizationwiththeT-cellindependentantigenDNP-Ficoll.Acta biol.med.germ.38,1627-1637. Fiebig,H.,Scherbaum,I.,Nuhn,P.&Ambrosius,H. (1979).Untersuchungen zurRegulationderIgM-ImmunantwortV.AffinitätvonKarpfen-anti-DNP-Antikörpern nach ImmunisierungmitDNP-Ficoll.Allergieu.Immunol.25,75-83. Finn,J.P. (1970).Theprotectivemechanisms indiseasesoffish.Vet.Bull.40, 873-886. Finn,J.P.&Nielsen,N.O. (1971a).Theinflammatoryresponseinrainbowtrout. J. FishBiol.3,463-478. Finn,J.P.&Nielsen,N.O. (1971b).Theeffectoftemperaturevariationontheinflammatoryresponseofrainbowtrout.J.Path.105,257-268. Finstad,J. &Good,R.A. (1966).Phylogenetic studiesofadaptiveimmuneresponses inthelowervertebrates.In:Phylogenyofimmunity (Ed.byR.T.Smith,P.A. MiescherandR.A.Good)Univ.FloridaPress,Gainesville,p.173-189. Fish,L.A.,Pollara,B.&Good,R.A. (1966).Characterizationofanimmunoglobulin fromthepaddlefish (Polyodon spathula). In:PhylogenyofImmunity (Ed.by R.T.Smith,P.A.MiescherandR.A.Good)Univ.ofFloridaPress,Gainesville, p.99-104. Fletcher,T.C.&Grant,P.T. (1968).Glycoproteinsintheexternalmucoussecretions oftheplaice, Pleuroneotes platessa, andotherfishes.Biochem.J. 106,12P. Fletcher,T.C.&Grant,P.T. (1969). Immunoglobulins intheserumandmucusofthe plaice (Pleuroneetes platessa). Biochem.J. 115,65P. Fletcher,T.C.&White,A. (1973a).Antibodyproduction intheplaice platessa L.)afteroralandparenteral immunizationwith Vibrio antigens.Aquaculture,1,417-428. (Pleuroneotes anguillarum Fletcher,T.C.&White,A. (1973b).Lysozymeactivityintheplaice platessaL.). Experientia,29,1283-1285. (Pleuroneotes Fletcher,T.C.&Baldo,B.A. (1974). Immediatehypersensitivity responses inflatfish. Science,185,360-361. Frommel,D.,Litman,G.W.,Finstad,J. &Good,R.A. (1971).TheevolutionoftheimmuneresponseXI.Theimmunoglobulinsofthehornedshark, Heterodontus francisai Purification,characterizationandstructuralrequirementsforantibodyactivity. J. Immunol.106,1234-1243. Fryer,J.L.,Rohovec,J.S.&Garrison,R.L. (1978).Immunizationofsalmonidsfor controlofvibriosis.Mar.Fish.Rev.40,20-23. Fujii,T.,Nakagawa,H.&Murakawa,S. (1979a).Immunityinlamprey I.Productionof haemolyticandhaemagglutinatingantibodytosheepredbloodcellsinJapanese lampreys.Dev.Comp.Immunol.3,441-452. Fujii,T.,Nakagawa,H.&Murakawa,S. (1979b).Immunityinlamprey II.Antigen-bindingresponsetosheeperythrocytesandhaptenintheammocoete.Dev.Comp. Immunol.3,609-620. Gerard,P. (1954).Organesuro-génitaux. I.Organesexcréteurs.In:TraitéZoologie 12 (Ed.byP.P.Grasse)MassonetCie.,Paris,p.974-1021. Gewürz,H.,Finstad,J.,Muschel,L.H.&Good,R.A. (1966).Phylogenetic inquiryinto theoriginsofthecomplement system. In:PhylogenyofImmunity (Ed.byR.T.Smitl P.A.MiescherandR.A. Good).Univ.FloridaPress,Gainesville,p.105-116. Gewürz,H.,Eugster,G.,Mushei,L.H.,Finstad,J. &Good,R.A. (1965).Development ofthecomplementsystem.Fed.Proc.24,504. Gigli,I.&Austen,K.F. (1971).Phylogenyandfunctionofthecomplement system.Ann. Rev.Microbiol.25,309-332. Gitlin,D.,Perricelli,A.&Gitlin,J.D. (1973).Immunoglobulinsynthesis infetal sharks.Comp.Biochem.Physiol.45A,247-256. Golub,E.S. (1971).Brain-associated9antigen:reactivityofrabbitanti-mousebrain withmouse lymphoidcells.Cell.Immunol.2,353-361. Good,R.A.&Papermaster,B.W. (1961).Phylogenyoftheimmuneresponse.I:The agnathan, Polystotrema stoutii. Fed.Proc.20,26. Good,R.A. &Papermaster,B.W. (1964).Ontogenyandphylogenyofadaptiveimmunity. Adv.Immunol.4,1-115. Good,R.A.,Finstad,J. &Litman,G.W. (1972).Immunology. In:ThebiologyofLampreys (Ed.byM.W.HardistyandI.C.Potter)AcademicPress,London,405-432. Good,R.A.,Finstad,J., Pollara,B.&Gabrielsen,A.E. (1966).Morphological studies ontheevolutionofthelymphoidtissuesamongthelowervertebrates.In:PhylogenyofImmunity (Ed.byR.T.Smith,P.A.MiescherandR.A. Good).Univ.Florida Press,Gainesville,p.149-168. Goven,B.A.,Dawe,D.L.&Gratzek,J.B. (1980). In vivo and in vitro anaphylactic typereactions infish.Dev.Comp.Immunol.4,55-64. Goss,R.J. (1961).Metabolicantagonistsandprolonged survivalofscalehomografts in Fundulus heteroolitis .Biol.Bull.121,162-172. Gould,R.W.,O'Leary,P.J., Garrison,R.L.,Rohovec,J.S.&Fryer,J.L. (1978).Spray vaccination:amethod fortheimmunizationoffish.Fish.Pathol.13,63-68. Grace,M.F.&Manning,M.J. (1980).Histogenesisofthelymphoidorgansinrainbow trout, Salmo gaivdneri Rich.1836.Dev.Comp.Immunol.4,255-264. Groberg,W.J.,McCoy,R.H.,Pilcher,K.S.&Fryer,J.L. (1978).Relationofwater temperaturetoinfectionsofCohosalmon (Onaorh.ynoh.us kisutah), Chinooksalmon (0. tshawytsoha), andSteelheadtrout (Salmo gaivdneri') with Aerornonas salmonioida and A. hydrophila. J. Fish.Res.BoardCan.35,1-7. Greaves,M.F.,Owen,J.J.T. &Raff,M.C. (1974).TandBlymphocytes:origins,propertiesandrolesinimmuneresponses.ExcerptaMedica,Amsterdam, 316pp. 90 Gruhn,R.,Fiebig,H.&Ambrosius,H. (1977).Untersuchungen zurRegulationderIgM ImmunantwortII.EinflussvonValenzundAffinitätvonKarpfen-anti-DNP-AntikörpernaufdieBindungsstärke zudemmultivalenten DNA-T.-Bacteriophagen-Konjugat.Actabiol.med.germ.36,87-99. Hagen,F.von (1936).DiewichtigstenEndokrinendesFlussaals.Thyreoidea,Thymus undHypophyse imLebenszyklusdesFlussaals (Anguilla vulgaris) nebsteiniger UntersuchungenüberdaschromophileundchromophobeKolloidderThyreoidea. Zool.Jahrb.61,467-538. Hall,S.J., Evans,E.E.,Dupree,H.K.,Acton,R.T.,Weinheimer,P.F. &Bennett,J.C. (1973).Characterizationofateleostimmunoglobulin:theimmunemacroglobulin fromthechannelcatfish, Iatalurus punatatus. Comp.Biochem.Physiol.46B, 187-197. Hammerström,S. (1974).Structure,specificity,bindingproperties,andsomebiologicalactivitiesofabloodgroupA-reactivehemagglutininfromthesnail Helix pomatia. Ann.N.Y.Acad.Sei.234,183-195. Harboe,M. (1963).Anoteontheabsenceofimmunereactions inMyxinoids.In:The BiologyofMyxine (Ed.byA.BrodaiandR.Fänge),Universitetforläget,Oslo, p.456-458. Hardy,S.W., Fletcher,T.C.&Olafsen,J.A. (1977).Aspectsofcellularandhumoral defencemechanisms inthePacificoyster, Cvassostvea gigas. In:Developmental Immunobiology (Ed.byJ.B.SolomonandJ.D.Horton)Elsevier/North-Holland BiomedicalPress,Amsterdam,p.59-66. Harisdangkul,V.,Kabat,E.A.,McDonough,R.J.&Sigel,M.M. (1972a).Aproteinin normalnursesharkserumwhichreactsspecificallywithfructosans I.Purificationandimmunochemicalcharacterization.J. Immunol.108,1244-1258. Harisdangkul,V.,Kabat,E.A.,McDonough,R.J.&Sigel,M.M. (1972b).Aproteinin normalnursesharkserumwhichreactsspecificallywithfructosans II.Physiochemicalstudies.J. Immunol.108.1259-1270. Harrell,L.W.,Etlinger,H.M. &Hodgins,H.O. (1976).Humoral factorsimportantin resistanceofsalmonidfishtobacterialdisease.II. Anti-Virbio anguillarum activityinmucusandobservationsoncomplement.Aquaculture,7,363-370. Harris,J.E. (1973a).The immuneresponseofdace Leuaiscus antigenicmaterials.J. FishBiol.5,261-276. leuciscus (L.)toinjected Harris,J.E. (1973b).Theapparent inabilityofcyprinidfishtoproduceskinsensitizingantibody.J. FishBiol.5,535-540. Heuzeroth,H.,Resch,E.,Richter,R.&Ambrosius,H. (1973).Untersuchungenüberdie Antigenverwandtschaftder Immunoglobuline I.KreuzreaktionvonKarpfenimmunoglobulinmitImmunoglobulinenvonVertreternverscheidenerWirbeltierklassen.Acta biol.med.germ.30,719-734. Hildemann,W.H. (1957).Scalehomotransplantationingoldfish [Cavassius Ann.N.Y.Acad.Sei.64,775-791. auratus). Hildemann,W.H. (1958).Tissuetransplantationimmunity ingoldfish. Immunology,1, 46-53. Hildemann,W.H. (1970).Transplantation immunityinfishes:Agnatha,Chondrichthyes andOsteichthyes.Transplant.Proc.2,253-259. Hildemann,W.H. (1974).Somenewconceptsinimmunologicalphylogeny.Nature,250, 116-120. Hildemann,W.H.&Haas,R. (1960).Comparativestudiesofhomotransplantation in fishes.J.Cell.Comp.Physiol.55,227-233. Hildemann,W.H.&Cooper,E.L. (1963).Immunogenesisofhomograftreactionsinfishes andamphibians.Fed.Proc.22,1145-1151. 91 Hildemann,W.H.&Thoenes,G.H. (1969).ImmunologicalresponsesofPacifichagfishI. Skintransplantationimmunity.Transplantation 7,506-521. Hodgins,H.O.,Weiser,R.S.&Ridgway,G.J. (1967).Thenatureofantibodiesandthe immuneresponseinrainbowtrout {Salmo gairdneri). J. Immunol.99,534-544. Hodgins,H.O.,Wendung,F.L.,Braaten,B.A.&Weiser,R.S. (1973).Twomolecular speciesofagglutininsinrainbowtrout {Salmo gairdneri') serumandtheir relationtoantigenicexposure.Comp.Biochem.Physiol.4SB,995-997. Ingram,G.A. &Alexander,J.B. (1976).Theimmuneresponseofbrowntrout {Salmo trutta L.)toinjectionwithsolubleantigens.Actabiol.med.germ.35,15611570. Ingram,G.A. &Alexander,J.B. (1979).Theimmunoglobulinofthebrowntrout, Salmo trutta anditsconcentration intheserumofantigen-stimulated andnon-stimulatedfish.J. FishBiol.14,249-260. Ingram,G.A.&Alexander,J.B. (1980).Theimmuneresponseofthebrowntrout Salmo trutta tolipopolysaccharide.J.FishBiol.16,181-197. Jakowska,S. &Nigrelli,R.F. (1953).Localizedresponseinfishtoexperimentalinflammationcausedbypathogenicbacteria.Anat.Rec. 177,526. Jayaraman,S.,Mohan,M.&Muthukkaruppan,VR. (1979).Relationshipbetweenmigrationinhibitionandplaque-formingcellresponsestosheeperythrocytes inthe teleost, Tilap-ia mossambicct. Dev.Comp.Immunol.3,67-76. Jenkin,C.R. (1977).Factorsinvolved intherecognitionofforeignmaterialby phagocyticcellsfrominvertebrates.In:Comparative Immunology (Ed.by J.J.Marchalonis).BlackwellScientificPublications,Oxford,p.89-97. Jerne,N.K.&Nordin,A.A. (1968).Plaqueformationinagarbysingleantibodyproducingcells.Science,140,405. Jirgensons,B.,Springer,G.F.&Desai,P.R. (1970).Comparativecirculardichroism studiesofindividualeelandhumanantibodies.Comp.Biochem.Physiol.34, 721-725. Johnston,W.H.,Acton,R.T.,Weinheimer,P.F.,Niedermeier,W.,Evans,E.E., Shelton,E.&Bennett,J.C. (1971).Isolationandphysio-chemicalcharacterizationofthe"IgM-like"immunoglobulinfromthestingray Dasyatis americana. J. Immunol.107,782-793. Jones,V.E.,Graves,H.E.&Orlans,E. (1976).Thedetectionof (Fab')--related surfaceantigensonthethymocytesofchildren.Immunology30,28T-288. Joy,J.E.&Jones,L.P. (1973).Observationsontheinflammatoryresponsewithinthe dermisofawhitebass, Morone chrysops (Rafinesque),infectedwith Lerndea aruoiata (Copepoda;Caligidea).J.FishBiol.4,21-23. Julius,M.H.,Simpson,E.&Herzenberg,L.A. (1973).A rapidmethodfortheisolationoffunctional thymus-derivedmurinelymphocytes.Eur.J. Immunol.3, 645-649. Katz,D.H.&Benacerraf,B. (1972).TheregulatoryinfluenceofactivatedTcellson Bcellresponsestoantigen.Adv.Immunol.15,1-94. Kinkelin,P.de&Dorson,M. (1973).Interferonproduction inrainbowtrout {Salmo gairdneri) experimentally infectedwithEgtvedvirus.J.gen.Virol.19, 125-127. Kinkelin,P.de,Baudouy,A.M. &LeBerre,M. (1977).Réactiondelatruitefario {Salmo trutta, L. 1766)etarc-en-ciel {Salmo gairdneri Richardson,1836)à l'infectionparunnouveaurhabdovirus.C.R.Acad.Se.Paris,248,401-404. Klapper,D.G.&Clem,L.W. (1972).Studiesonthemildreductionofsharkpolymeric andmonomericIgM.Comp.Biochem.Physiol.42A,241-247. 92 Klaus,G.G.B.,Halpern,M.S.,Koshland,M.E.&Goodman,J.W. (1971).Apolypeptide chainfromleopardshark 19SimmunoglobulinanalogoustomammalianJchain. J. Immunol.107,1785-1787. Koshland,M.E. (1975).StructureandfunctionoftheJchain.Adv.Immunol.20,41-69. Kownatzki,E. (1973).ReassociationofIgMsubunitsinthepresenceandabsenceof J chain.Immunol.Commun.2,105-113. Krantz,G.E.,Reddecliff,J.M. &Heist,C E . (1963).Developmentofantibodiesagainst Aeromonas salmnicida introut.J. Immunol.91,757-760. Krantz,G.E.,Reddecliff,J.M. &Heist,C.E. (1964). Immuneresponseoftroutto Aeromonas salmo Part I.Development ofagglutinatingantibodiesandprotective immunity.Prog.FishCult.26,3-10. Krementz,A.B.&Chapman,G.B. (1975).Ultrastructureoftheposteriorhalfofthe intestineofthechannelcatfish, Iotaluvus punotatus. J.Morph.145,441-482. Kreutzmann,H.L. (1977).UntersuchungenzurMorphologiedesBlutesvomEuropäischen Aal (Anguilla anguilla) III.Beobachtungenammonozytärenund lymphatischen Zellen.FoliaHaematol. (Leipzig),104,538-557. Legier,D.W. &Evans,E.E.&Dupree,H.K. (1967).Comparative immunology:serum complementoffreshwaterfishes.Trans.Am.Fish.Soc.96,237-242. Legier,D.W.,Weinheimer,P.F.,Acton,R.T.,Dupree,H.K.&Russell,T.R. (1971). Humoral immunefactorsinthepaddlefish, Polyodon spathula. Comp.Biochem. Physiol.33B,523-527. Lemmi,C.A.,Cooper,E.L.&Moore,T.C. (1974).Anapproachtostudyingevolution ofcellular immunity.Contemp.Topics Immunobiol.4,109-119. Leslie,G.A. &Clem,L.W. (1969).Productionofanti-haptenantibodiesbyseveral classesoflowervertebrates.J. Immunol.103,613-617. Levy,L. (1963).Effectofdrugsongoldfishscalehomograftsurvival'.Proc.Soc. exp.Biol.Med. 114,47-50. » Linthicum,D.S.&Hildemann,W.H. (1970). ImmunologicresponsesofPacifichagfish • III.Serumantibodiestocellularantigens.J. Immunol.105,912-918. "' ' Litman,G.W. (1977).Physicalpropertiesofimmunoglobulinsoflowerspecies:acom- ' parisonwithimmunoglobulinsofmammals.In:Comparative Immunology (Ed.by J.J.Marchalonis)BlackwellScientific Publ.,Oxford,p.239-275. Litman,G.W.,Howell,J., Finstad,J.,Good,R.A.&Pollara,B. (1969).Properties ofanagglutinatingantibodyinthesealamprey.Fed.Proc.28,819. Litman,G.W.,Frommel,D.,Finstad,J.,Howell,J., Pollara,B.W.&Good,R.A. (1970b) '. Theevolutionoftheimmuneresponse.VIII.Structuralstudiesofthelamprey immunoglobulin.J. Immunol.105,1278-1285. Litman,G.W.,Frommel,D.,Finstad,J. &Good,R.A. (1971a).Theevolutionofthe immuneresponse.IX.Immunoglobulinsofthebowfin:Purificationandcharacterization.J. Immunol.106,747-753. Litman,G.W.,Frommel,D.,Finstad,J. &Good,R.A. (1971b).Evolutionoftheimmune* response.X. Immunoglobulinsofthebowfin:Subunitnature.J. Immunol.107, 881-888. * Litman,G.W.,Frommel,D.,Rosenberg,A.&Good,R.A. (1971c).Circulardichroic analysisofimmunoglobulinsinphylogeneticperspective.Biochim.Biophys.Acta, 236,647-654. Litman,G.W.,Frommel,D.,Chartrand,S.L.,Finstad,J. &Good,R.A. (1971d).Significanceofheavychainmassandantigenicrelationship inimmunoglobulinevolution. Immunochemistry,8,345-349. 93 Loon,J.J.A.van,Oosterom,R.van&Muiswinkel,W.B.van (1980).Developmentofthe immunesystemincarp.In:Developmental andComparative Immunology I(Ed.by J.B.Solomon).PergamonPress,Oxford (inpress). Lopez,D.M., Sigel,M.M.&Lee,J.C. (1974).PhylogenicstudiesonTcellsI. Lymphocytesofthesharkwithdifferentialresponsetophytohemagglutininand concanavalinA.Cell.Immunol.10,287-293. Luk'yanneko,V.l. (1965).Interspecies differences infrequencyofdiscoveryandrate ofcontentofserumlysozymeinfishes.Izv.Akad.Nauk.SSSR,Ser.B.3, 409-413. Macela,A.&Romanovsky,A. (1969).Theroleoftemperatureinseparatestagesofthe immuneresponseinanurans.FoliaBiol.15,157-160. Mackmull,G.&Michels,N.A. (1932).Absorptionofcolloidalcarbonfromtheperitonealcavityintheteleost, Tautogolabvus adspersus. Amer.J.Anat.51,3-45. Maisse,G.&Dorson,M. (1976).Productiond'agglutinines anti Aeromonas par latruitearc-en-ciel.Ann.Rech,vétér.7,307-313. salmoniaida Marchalonis,J.J. (1971). Isolationandpartialcharacterizationof immunoglobulins ofgoldfish [Cavassius auaratus) andcarp (Cyprinus aarpio). Immunology,20, 161-173. Marchalonis,J.J. (1977).Immunity inevolution,EdwardArnold,London,316pp. Marchalonis,J. &Edelman,G.M. (1965).Phylogeneticoriginsofantibodystructure. I:Multichainstructureofimmunoglobulins inthesmoothdogfish (Mustelus cards), J. exp.Med. 122,601-618. Marchalonis,J. &Edelman,G.M. (1966).Polypeptidechainsofimmunoglobulinsfromthe smoothdogfish {Mustelus oanis). Science,154,1567-1568. Marchalonis,J.J. &Edelman,G.M. (1968a). Isolationandcharacterizationofa haemagglutininfrom Limulus polyphemus. J.Mol.Biol.1968,453-465. Marchalonis,J.J. &Edelman,G.M. (1968b). Phylogenetic studiesofantibodystructureIII.Antibodies intheprimary immuneresponseofthesealamprey, Petromyzon marinus. J.exp.Med. 127,891-914. Marchalonis,J.J. &Schonfeld,S.A. (1970).Polypeptidechainstructureofstingray immunoglobulin.Biochim.Biophys.Acta,221,604-611. Marchalonis,J.J. &Weltman,J.K. (1971).Relatednessamongproteins:Anewmethodof estimationand itsapplicationtoimmunoglobulins.Comp.Biochem.Physiol.(B) 38,609-625. Marchalonis,J.J. &Cone,R.E. (1973).Thephylogeneticemergenceofvertebrateimmunity.Austr.J. exp.Biol.Med.Sei.51,461-488. Marchalonis,J.J.,Warr,G.W.,Bucana,C.,Hoyer,L.,Szenberg,A.&Warner,N.L. (1977).DemonstrationandpartialcharacterizationofmurineBandTcellsurface immunoglobulinsusingavianantibodies.In:ICN-UCLASymphosiaonMolecularandCellularBiologyVol.VI.Immunesystem;geneticsandregulation (Ed. byE.E.Sercarz,L.A.HerzenbergandC F . Fox)AcademicPress,New-York, p.285-295. Marchalonis,J.J.,Warr,G.W. &Ruben,L.N. (1978).Evolutionary immunobiologyand theproblemoftheT-cellreceptor.Dev.Comp.Immunol.2,203-218. Mattisson,A.G.M. &Fänge,R. (1977).Light-andelectronmicroscopicobservationson thebloodcellsof theatlantichagfish, Myxine glutinosa (L).Actazool. (Stockh.)58,205-221. Mazeaud,M.M.,Mazeaud,F.&Donaldson,E.M. (1977).Primaryandsecondaryeffectsof stressinfish:somenewdatawithageneralreview.Trans.Amer.Fish.Soc.106, 201-212. 94 McCumber,L.J. &Clem,L.W. (1976).Acomparative studyofJ.Chain:structureand stoichiometry inhumanandnursesharkIgM.Immunochemistry,13,479-484. McKinney,E.C.,McLeod,T.F.&Sigel,M.M. (1980).Allograftrejectioninaholostean fish, Lepisostens platyvhincus. Dev.Comp.Immunol, (inpress). McKinney,E.C.,Smith,S.B.,Haines,H.G. &Sigel,M.M. (1977).Phagocytosisbyfish cells.J.Reticuloendothel.Soc.21,89-95. McKinney,E.C.,Ortiz,G.,Lee,J.C.,Sigel,M.M.,Lopez,D.M., Epstein,R.S.&McLeod. T.F. (1976).Lymphocytesoffish:multipotentialorspecialized?In:Phylogenyof ThymusandBoneMarrow-Bursacells (Ed.byR.K.WrightandE.L.Cooper)Elsevier/ North-HollandBiomedicalPress,Amsterdam,p.73-82. McLeod,T.F.,Sigel,M.M.&Yunis,A.A. (1978).Regulationoferythropoiesis inthe Floridagar, Lepisosteus platyrhinaus. Comp.Biochem.Physiol.60A,145-150. McQueen,A.,McKenzie,K.,Roberts,R.J.&Young,H. (1973).Studiesoftheskinof Plaice (Pleuronectes platessa L.). III.Theeffectoftemperatureontheinflammatoryresponsetothemetacercariaeof Cryptocotyle lingua (Creplin,1825) (Digenea:Heterophydae).J.FishBiol.5,241-247. Mestecky,J.Kulhavy,R.,Wright,G.P.&Schrohenloher,R.E. (1975a).J Chain: occurrenceandcharacteristicsinbonyfishes.Fed.Proc.34,954. Mestecky,J., Kulhavy,R.,Schrohenloher,R.E.,Tomana,M.&Wright,G.P. (1975b). IdentificationandpropertiesofJchainisolatedfromcatfishmacroglobulin. J. Immunology,115,993-997. Miller,N.W.&Tripp,M.R. (1979).Theeffectofcaptivityontheimmuneresponseof theteleost, Fundulus hetevoclitus. Amer.Soc.Zool.19,879. Morrow,W.J.W.&Harris,J.E. (1978).Leukocytemigrationinhibitionfactorinthe dogfish Soyliorhinus oanioula L.4thEur.Immunol.Meeting.Budapest,31. Muroga,K.&Egusa,S. (1969). ImmuneresponseoftheJapaneseeelto Vibrio anguillarum I.Effectsoftemperatureonagglutinatingantibodyproduction instarved eels.Bull.Jap.Soc.Scient.Fish.35,868-874. Murray,C K . &Fletcher,T.C. (1976).Theimmunohistochemical localizationoflysozyme inplaice (Pleuroneates platessa L.)tissues.J.FishBiol.9,329-334. Nardi,F. (1938).UntersuchungenüberdieKonstitutionderHämolysinedernormalen Fischsera.Ztschr.f.Immunitätsforsch.94,505-520. Neale,N.L.&Chavin,W. (1971).Lymphocytictissuealterationsduringtheprimary immuneresponseofthegoldfish [Cavassius auvatus L.).Mich.Acad.3,21-30. Oie,H.K.&Loh,P.C. (1969).Reovirustype2:Inductionofviralresistanceand interferonproductioninfatheadminnowcells.Proc.Soc.exp.Biol.Med.136, 369-373. Olson,M.O.J.&Liener,I.E. (1967).SomephysicalandchemicalpropertiesofconcanavalinA,thephytohemagglutininofthejackbean.Biochemistry,6,105-111. O'Neill,J.G. (1979).Theimmuneresponseoftheantarcticteleost Notothenia tothebacteriophageMS2.Brit.Ant.Surv.Bull, (inpress). vossii O'Neill,J.G. (1980).Temperatureandtheprimaryandsecondaryimmuneresponsesof threeteleosts, Salrno tvutta, Cypvinus oarpio and Notothenia vossii, toMS2 bacteriophage.In:PhylogenyofImmunologicalMemory (editedbyM.J.Manning) Elsevier/North-HollandBiomedicalPress,Amsterdam,123-130. Ortiz-Muniz,G.&Sigel,M.M. (1968).Invitrosynthesisofanti-BSAantibodiesby fishlymphoidorgans.Bact.Proc.M8,66. 95 Ortiz-Muniz,G.&Sigel,M.M. (1971).Antibody synthesis inlymphoidorgansoftwo marineteleosts.J. Ret.Soc.9,42-52. Ourth,D.D. (1980).Secretory IgM,lysozymeandlymphocytes intheskinmucusofthe channelcatfish, Iatalurus punctatus. Dev.Comp.Immunol.4,65-74. Papermaster,B.W.,Condie,R.M. &Good,R.A. (1962).ImmuneresponseintheCalifornia hagfish.Nature 196,355-357. Papermaster,B.W.,Condie,R.M.,Finstad,J. &Good,R.A. (1964).Evolutionofthe immuneresponse I.Thephylogeneticdevelopmentofadaptive immunologicresponsivenessinvertebrates.J. exp.Med. 119,105-118. Papermaster,B.W.,Condie,R.M.,Finstad,J.K., Good,R.A.&Gabrielsen,A.E. (1963). Phylogeneticdevelopmentofadaptive immunity.Fed.Proc.23,1152-1155. Pepys,M.B.,Baltz,M.L.,Musallam,R. &Doenhoff,M.J. (1980).Serumproteinconcentrationsduring Schistosoma mansoni infectioninintactandT-celldeprived miceI.Theacutephaseproteins,C3andserumamyloidP-component (SAP). Immunology,39,249-254. Pepys,M.B.,Dash,A.C.,Fletcher,T.C.,Richardson,N.,Murin,E.A.&Feinstein,A. (1978).Analogues inothermammalsandinfishofhumanplasmaproteins, C-reactiveproteinandamyploidPcomponent.Nature278,168-170. Perey,D.Y.E.,Finstad,J., Pollara,B.&Good,R.A. (1968).Evolutionofthe immune responseVI.Firstandsecond sethomograftrejections inprimitivefishes. Lab. Invest.19,591-598. Perlmutter,A.,Sarot,D.A.,Yu,M.L.,Filazzola,R.J.&Seeley,R.J. (1973).The effectofcrowdingontheimmuneresponseofthebluegourami, Triohogaster triahopterus, toinfectiouspancreaticnecrosis (IPN)virus.LifeSciences,13, 363-375. Peters,G. (1979).ZurInterpretationdesBegriffs "Stress"beimFish.In:Fishand Environment (Ed.byH.H.Reichenbach-Klinke).GustavFischerVerl.,Stuttgart, p. 25-32. Pfeiffer,W. (1974).Pheromonesinfishandamphibia.In:Pheromones (Ed.byM.C. Birch).FrontiersofBiology,Vol.32.North-Holland Publ.,Amsterdam,p.269-296. Pfuderer,P.,Williams,P.&Francis,A.A. (1974).Partialpurificationofthecrowdingfactorfrom Carassius auratus and Cyprinus carpio. J.exp.Zool.187, 375-382. Pliszka,F. (1939).WeitereUntersuchungenüber Immunitätsreaktionenundüber PhagozytosebeiKarpfen.Zbl.Bakt.1Abt.Orig.143,451-460. Pollara,B.,Finstad,J. &Good,R.A. (1966).Thephylogenetic developmentofimmunoglobulins.In:PhylogenyofImmunity (Ed.byR.T.Smith,P.A.Miescherand R.A.Good)Univ.FloridaPress,Gainesville,p.88-98. Pollara,B.,Finstad,J., Good,R.A. &Bridges,R.A. (1966). Immunoglobulinsofthe sealamprey [Vetrornyzon marinus). Fed.Proc.25,437. Pollara,B.Suran,A.,Finstad,J. &Good,R.A. (1968).N-terminalaminoacid sequencesofimmunoglobulinchains in Polyodon spathula. Proc.natl.Acad. Sei.USA,59.1307-1312. Pollara,B.,Litman,G.W., Finstad,J.,Howell,J. &Good,R.A. (1970).Theevolution oftheimmuneresponse.VII.Antibodytohuman"0"cellsandpropertiesofthe immunoglobulininlamprey.J. Immunol.105,738-745. Pontius,H. &Ambrosius,H. (1972).Beiträge zur ImmunobiologiepoikilothermerWirbeltiereIX.UntersuchungenzurzellulärenGrundlagehumoraler Immunoreaktionen derKnochenfisheamBeispieldesFlussbarsches {Peraa fluviatilis L.).Acta biol.med.germ.29,319-339. Post,G. (1963).Theimmuneresponseofrainbowtrout [ßalrao gairdneri) hydrophila. UtahFishGameDept.Inf.Bull.63-67. 96 to Aeromonas Post,G. (1966).Responseofrainbowtrout [Salmo gairdneri) hydvophila. J. Fish.Res.Bd.Canada,23,1487-1494. toantigensof Aeromonas Raff,M.C. (1970).Twodistinctpopulationsofperipheral lymphocytes inmicedistinguishablebyimmunofluorescence.Immunology 19,637-650. Raff,M.C. (1971).SurfaceantigenicmarkersfordistinguishingTandBlymphocytes inmice.Transplant.Rev.6,52-80. Raison,R.L.,Hull,C.J.&Hildemann (1978a).Productionandspecificityofantibodies tostreptococci inthepacifichagfish, Eptatetrus stoutii. Dev.Comp.Immunol. 2,253-262. Raison,R.L.,Hull,C.J.,Hildemann,W.H. (1978b).Characterizationofimmunoglobulin fromthePacifichagfish,aprimitivevertebrate.Proc.Natl.Acad.Sei.USA,75, 5679-5682. Rasmuson,T.&Boman,H.G. (1977).Theassayandthespecificityproblemininsect immunity.In::DevelopmentalImmunobiology (Ed.byJ.B.SolomonandJ.D.Horton) Elsevier/North-HollandBiomedicalPress,Amsterdam,p.83-90. Ratcliffe,N.A.&Rowley,A.F. (1979).AComparative synopsisofthestructureand functionofthebloodcellsofinsectsandotherinvertebrates.Dev.Comp. Immunol.3,189-243. Reichenbach-Klinke,H.H. (1976).DieGewässeraufheizungundihreAuswirkungaufden LebensraumWasser.In:The InfluenceofEnvironmental FactorsupontheHealth ofFish (Ed.byH.H.Reichenbach-Klinke).GustavFischerVerlag,Stuttgart, p.153-161. Reif,A.E.&Allen,J.M.V. (1963).Specificityofisoantiseraagainstleukemiaand thymiclymphocytes.Nature,200,1332. Reifel,C.W.&Travill,A.A. (1977).Structureandcarbohydratehistochemistryofthe esophagusintenteleosteanspecies.J.Morph.152,303-314. Richter,R.F.&Ambrosius,H. (1978). Strukturelleund immunochemischeUntersuchungen amImmunoglobulindesKarpfens {Cyprinus aarpio L.)IV.InvitroReassoziation vonKarpfen-Immunoglobulin.Actabiol.med.germ.37,479-486. Richter,R.,Frenzel,E.M.,Hädge,D.,Kopperschläger,G.&Ambrosius,H. (1973). StrukturelleundimmunochemischeUntersuchungenamImmunoglobulindesKarpfens [Cypvinus aarpio L.) I.AnalyseamGesamtmolekül.Actabiol.med.germ.30, 735-749. Ridgway,G.J.,Hodgins,H.O.&Klontz,G.W. (1966).Theimmuneresponseinteleosts. In:PhylogenyofImmunity (Ed.byR.T.Smith,P.A.MiescherandR.A.Good) Univ.ofFloridaPress,Gainesville,p.199-207. Riviere,H.B.,Cooper,E.L.,Reddy,A.L.&Hildemann,W.H. (1975).Insearchof hagfishthymus.Amer.Zool.15,39-49. Roberts,R.J. (1975).Theeffectoftemperatureondiseasesandtheirhistopathological manifestations infish.In:ThePathologyofFishes (Ed.byW.E.Ribelinand G.Migaki)Univ.WinconsinPress,Madison,p.477-496. Roberts,R.J.,Young,M.&Milne,J.A. (1972).Studiesontheskinofplaice (Pleuroneotes platessa] I.Thestructureandultrastructure ofnormalplaice skin.J.FishBiol.4,87-98. Ross,G.D.&Jensen,J.A. (1973a).Thefirstcomponent (C1n)ofthecomplementsystem ofthenurseshark [Qinglymostoma a-irratum) I.Hemolyticcharacteristicsof partiallypurifiedC1n.J. Immunol.110,175-182. Ross,G.D.&Jensen,J.A. (1973b).Thefirstcomponent (C1n)ofthecomplementsystem ofthenurseshark {Ginglymostoma c-ivratum) II.Purificationofthefirstcomponentbyultracentrifugationandstudiesofitsphysicochemicalproperties. J. Immunol.110,911-918. 97 Ruben,L.N.,Warr,G.W.,Decker,J.M. &Marchalonis,J.J. (1977).Phylogeneticorigins o£immunerecognition:Lymphoidheterogeneityandthehapten/carriereffectin thegoldfish, Carassius auratus. Cell.Immunol.31,266-283. Russell,W.J.,Taylor,S.A. &Sigel,M.M. (1976).Clearanceofbacteriophagein Poikilothermievertebratesandtheeffectoftemperature.J.Reticuloendothel. Soc.19,91-96. Rijkers,G.T.&VanMuiswinkel,W.B. (1977).Theimmunesystemofcyprinidfish.The developmentofcellularandhumoralresponsiveness intherosybarb [Barbus eonahonius) . In:Developmental Inmunobiology (Ed.byJ.B.SolomonandJ.D.Horton] Elsevier/North-HollandBiomedicalPress,Amsterdam,p.233-240. Rijkers,G.T.,Frederix-Wolters,E.M.H.&VanMuiswinkel,W.B. (1980a).Thehaemolytic plaqueassayincarp (Cyprinus aarpio). J. Immunol.Methods,33,79-86. Rijkers,G.T.,Wiegerinck,J.A.M.&Muiswinkel,W.B.van (1980b).Temperaturedependenceofhumoralimmunityincarp.In:DevelopmentalandComparative Immunology I. (Ed.byJ.B.Solomon).PergamonPress,Oxford (inpress). Sage,H.J. &Connett,S.L. (1969).Studiesonahemagglutininfromthemeadowmushroom II.Purification,compositionandstructureof Agariaus aampestris hemagglutinin. J.Biol.Chem.244,4713-4719. Sailendri,K. (1973).Studiesonthedevelopmentoflymphoidorgansandimmuneresponsesintheteleost, Tilapia mossambiaa (Peters).Thesis,MaduraiUniversity, 106pp. Sailendri,K.&Muthukkaruppan,VR. (1975).Theimmuneresponseoftheteleost, Tilapia mossambiaa tosolubleandcellularantigens.J. exp.Zool.191, 79. Sanders,J.E.,Pilcher,K.S.&Fryer,J.L. (1978).Relationofwatertemperatureto bacterialkidneydiseaseinCohosalmon [Onoorhynohus kisutah), Sockeyesalmon (0. nerka), andSteelheadtrout [Salmo gairdneri). J. Fish.Res.BoardCan.35, 8-11. Sarot,D.A. &Perlmutter,A. (1976).Thetoxicityofzinctotheimmuneresponseof thezebrafish, Braahydanis revis, injectedwithviralandbacterialantigens. Trans.Am.Fish.Soc.3,456-459. Schachte,J.H. (1978).Immunizationofchannelcatfish, latalurus twobacterialdiseases.Mar.Fish.Rev.40,18-19. punotatus, against Schaperclaus,W. (1965).Etiologyofinfectiouscarpdropsy.Ann.N.Y.Acad.Sei.126, 587-597. Scharrer,E. (1944).Thehistologyofthemeningealmyeloidtissueintheganoids Arnia and Lepisoeteus. Anat.Rec.88,291-310. Schulkind,M.L.,Robbins,J.B.&Clem,L.W. (1971).Reactivitiesofshark 19Sand7S IgMantibodiesto Salmonella typhimurium. NatureNewBiol.230,182-183. Secombes,C.J.&Manning,M.J. (1980).Comparativestudiesontheimmunesystemof fishesandamphibians.I.Antigenlocalizationinthecarp {Cyprinus aarpio). J.FishDis.(inpress). Serero,M.&Avtalion,R.R. (1978).Regulatoryeffectoftemperatureandantigenupon immunityinectothermicvertebrates.III.Establishmentofimmunological suppression infish.Dev.Comp.Inmunol.2,87-94. Shechmeister,I.L.,Watson,L.J.,Cole,V.W.&Jackson,L.L. (1962).Theeffectof X-radiationongoldfish.I.TheeffectofX-radiationonsurvivalandsusceptibilityofthegoldfish, Carassius auratus, toinfectionby Aeromonas salmoniaida and Gyrodaotylus spp.Radiât.Res.16,89-97. Shelton,E.&Smith,M. (1970).Theultrastructure ofcarp {Cyprinus aarpio) immunoglobulin:atetramericmacroglobulin.J.Mol.Biol.54,615-617. 98 Siegel,J.,Rent,R.&Gewürz,H. (1974). InteractionsofC-reactiveproteinwiththe complement system.I.Protamine-inducedconsumptionofcomplement inacutephase sera.J. exp.Med. 140,631-647. Sigel,M.M.&Clem,L.W. (1965).Antibodyresponseoffishtoviralantigens.Ann. N.Y.Acad.Sei. 126,662-677. Sigel,M.M.&Clem,L.W. (1966). Immunologicanamnesis inelasmobranchs.In:PhylogenyofImmunity (Ed.byR.T.Smith,P.A.MiescherandR.A.Good).Univ. FloridaPress,Gainesville,p.190-197. Sigel,M.M.,Voss,E.W.&Rudikoff,S. (1972).Bindingpropertiesofsharkimmunoglobulins.Comp.Biochem.Physiol.42A,249-259. SigelM.M.,Lee,J.C.,McKinney,E.C.&Lopez,D.M. (1978).Cellularimmunityin fishasmeasuredby lymphocytestimulation.Mar.Fish.Rev.40,6-11. Sigel,M.M.,Acton,R.T.,Evans,E.E.,Russell,W.J.,Wells,T.G.,Painter,B.& Lucas,A.H. (1968).T ? bacteriophageclearanceinthe lemonshark.Proc.Soc.exp. Biol.Med. 128,977-979. Sledge,C , Clem,L.W.&Hood,L. (1974),Antibodystructure:animoterminalsequences ofnursesharklightandheavychains.J. Immunol.112,941-948. Small,P.A., Klapper,D.G. &Clem,L.W. (1970).Half-lifes,bodydistributionand lackofinterconversionofserum19Sand7SIgMofsharks.J. Immunol.105, 29-37. Sminia,T.,Knaap,W.P.W,vander&Edelenbosch,P. (1979).Theroleofserumfactors inphagocytosisofforeignparticlesbybloodcellsoffreshwatersnail Lymnaea stagnalis. Dev.Comp.Imnunol.3,37-44. Smith,A.M.,Potter,M. &Merchant,E.B. (1967).Antibody-formingcellsinthe pronephrosoftheteleost Lepomis maorochivus. J. Immunol.99,876-882. Snieszko,S.F. (1970).Immunizationoffishes:areview.J.WildlifeDis.6, 24-30. Solomon,J.B. (1980).Thedifferentiationclock inontogenyofimmunologicalfunction. In:DevelopmentalandDifferentiationofVertebrate Lymphocytes (Ed.by J.D.Horton)Elsevier/North-HollandBiomedicalPress,Amsterdam,p.265-277. Spitzer,R.H.,Downing,S.W., Koch,E.A. &Kaplan,M.A. (1976).Hemagglutininsinthe mucusofPacifichagfish, Eptatretus atoutii. Comp.Biochem.Physiol.54B, 409-411. Springer,G.F.&Desai,P.R. (1970). Theimmunochemicalrequirementsforspecific activityandthephysiochemicalpropertiesofeelanti-humanblood-groupH (0) 7Sglobulin.VoxSang.18,551-554. Stolen,J.S.,Mäkelä,0. (1975).Carrierpreimmunizationintheanti-haptenresponse ofamarine fish.Nature,254,718-719. Stolen,J.S.&Mäkelä,0. (1976).Cellcollaboration inamarinefish.Theeffectof carrierpreimmunizationontheanti-haptenresponsetoNIPandNNP.In:PhylogenyofThymusandBoneMarrow-BursaCells (Ed.byR.K.WrightandE.L.Cooper). Elsevier/NorthHollandBiomedicalPress,Amsterdam,p.93-97. Strand,J.A. (1975).Suppressionoftheprimaryimmuneresponseinrainbowtrout, Sabrno gcdrdneri, sublethallyexposedtotritiatedwaterduringembryogenesis. Thesis,152pp. Strand,J.A., Fujihara,M.P.,Burdett,R.D.&Poston,T.M. (1977).Suppressionofthe primaryimmuneresponseinrainbowtrout, Salmo gairdneri, sublethallyexposed totritiatedwaterduringembryogenesis.J.Fish.Res.BoardCan.34,1293-1304. Stutzman,W.J. (1967).Combinedeffectsoftemperatureandimmuno-suppressivedrug therapyonallograftrejectioningoldfish.Transplantation,5,1344-1346. Suran,A.A.,Tarail,M.H.&Papermaster,B.W. (1967).Immunoglobulinsoftheleopard sharkI.Isolationandcharacterizationof17Sand7Simmunoglobulinswithprecipitatingactivity.J. Immunol.99,679-686. 99 Szenberg,A.,Marchalonis,J.J. &Warner,N.L. (1977).Directdemonstrationofmurine thymus-dependent cellsurfaceendogenousimmunoglobulin.Proc.natl.Acad.Sei. USA 74,2113-2117. Tarn,M.R.,Reddy,A.L.,Karp,R.D.&Hildemann,W.H. (1977). Phylogenyofcellular immunityamongvertebrates.In:Comparative Immunology (Ed.byJ.J.Marchalonis). BlackwellScientificPubl,Oxford,p.98-119. Thiele,H.G.,Stark,R. &Keeser,D. (1972).Antigenic correlationsbetweenbrainand thymus. I.Commonstructures inratandmousebraintissueandthymocytes.Eur. J. Immunol.2,424-429. Thoenes,G.H.&Hildemann,W.H. (1969). Immunological responsesofPacifichagfishII. Serumantibodyproduction tosolubleantigen.In:DevelopmentalAspectsofAntibodyFormationandStructure (Ed.byJ. Sterzl andJ. Rina). CzechslovakAcademy ofScience,Prague,p.711-722. Toupin,J. &Lamoureux,G. (1976).Coelomocytesofearthworms:phytohemagglutinin (PHA)responsiveness.In:PhylogenyofThymusandBoneMarrow-BursaCells (Ed. byR.K.WrightandE.L.Cooper)Elsevier/North-HollandBiomedicalPress. Amsterdam,p.19-25. Triplett,E.L.&Barrymore,S. (1960).Tissue specificity inembryonicandadult Cymatogastev aggregate studiedbyscaletransplantation.Biol.Bull. 118, 463-471. Trump,G.N. (1970). Goldfish immunoglobulins andantibodies tobovine serumalbumin. J. Immunol.104,1267-1275. Trump,G.N. &Hildemann,W.H. (1970).Antibody responsesofgoldfishtobovine serum albumin.Primaryand secondaryresponses.Immunology,19,621-627. Turpen,J.B.,Volpe,E.P.&Cohen,N. (1973).Ontogenyandperipheralization of thymic lymphocytes.Science,182,931-933. Turpen,J.B.,Volpe,E.P.&Cohen,N. (1975).Ontheoriginofthymiclymphocytes. Amer. Zool.15,51-61. Udey,L.R.&Fryer,J.L. (1978). Immunizationoffishwithbacterinsof Aevomcmas salmoniaida. Mar.Fish.Rev.40,12-17. Ueki,A.,Fukushima,Y.,Hyodoh,F. &Kimoto,T. (1978).DistributionofC3receptor sitesoncellsurfacesofvertebrate fibroblasts.Dev.Comp.Immunol.2,547-554. Uhr,J.W., Finkelstein,M.S.&Franklin,E.C. (1962).Antibodyresponse tobacteriophage<|>X174innonmammalianvertebrates.Proc.Soc.exp.Biol.Med. 111,13-15. Vladimirov,V.L. (1972).Naturalimmunologicalresistance inthecarp (Cyprinus L.)duringerysipelas.Dokl.Akad.Nauk.SSSR,202,957-959. aarpio Vos,J.G. (1977). Immunesuppressionasrelated totoxicology.Crit.Rev.Toxicol.5, 67-101. Vos,J.G.,Faith,R.E.&Luster,M.I. (1980). Ininunealterations.Rev.Biochem. Toxicol, (inpress). Voss,E.W.,Russell,W.J.&Sigel,M.M. (1969).Purification andbindingproperties ofnursesharkantibodies.Biochemistry,8,4866-4872. Voss,E.W.,Rudikoff,S.&Sigel,M.M. (1971).Comparative ligand-bindingbypurified nurse sharknaturalantibodiesandanti-2,4-dinitrophenyl antibodies from otherspecies.J. Immunol.107,12-18. Walsh,A.H.&Ribelin,W.E. (1975).Thepathologyofpesticidepoisoning.In:The PathologyofFishes (Ed.byW.E.RibelinandG.Migaki).Univ.WinconsinPress, Madison,p.515-557. Warr,G.W. &Marchalonis,J.J. (1977).Lymphocyte surface immunoglobulinofthegoldfishdiffersfromitsserumcounterpart.Dev.Comp.Immunol.1,15-22. 100 Warr,G.W.&Marchalonis,J.J. (1978).Specific immunerecognitionbylymphocytes: anevolutionaryperspective.Quart.Rev.Biol. 53,225-241. Warr,G.W.,DeLuca,D. &Marchalonis,J.J. (1976).Phylogeneticoriginsofimmune recognition:Lymphocytesurfaceimmunoglobulins inthegoldfish Carassius auvatus. Proc.natl.Acad.Sei.USA,73,2476-2480. Warr,G.W.,DeLuca,D.,Decker,J.M., Marchalonis,J.J. &Ruben,L.N. (1977).Lymphoid heterogeneity inteleostfish:Studiesonthegenus Carassius. In:Developmental Immunobiology (Ed.byJ.B.SolomonandJ.D.Horton)Elsevier/North-Holland, BiomedicalPress,Amsterdamm,p.241-248. Watson,L.J.,Shechmeister,I.L.&Jackson,L.L. (1963).Thehaematologyofgoldfish (Carassius auratue). Cytologia,28,118-130. Weinheimer,P.F.,Mestecky,J. &Acton,R.T. (1971).SpeciesdistributionofJchain. J. Immunol.107,1211-1212. Weinreb,E.L. (1963).Studiesonthefinestructureofteleostbloodcells -I. Peripheralblood.Anat.Rec.147,219-255. Weinreb,E.L.&Weinreb,S. (1969).A studyofexperimentally induced endocytosis inateleost.I.Lightmicroscopyofperipheralbloodcellresponse.Zoologica N.Y.54,25-34. Weiss,E.&Avtalion,R.R. (1977).Regulatoryeffectoftemperatureandantigenupon immunityinectothermicvertebrates.II.Primaryenhancementofanti-hapten antibodyresponseathighandlowtemperatures.Dev.Comp.Immunol.1,93-104. Wojdani,A.,Katz,E.,Shahrabani,R.&Avatalion,R.R. (1979).Influenceofenvironmentaltemperatureonthefateofsolubleandbacterialantigens incarp.Amer. Zool. 19,932. Yamaga,K.,Etlinger,H.M. &Kubo,R.T. (1977).Partialcharacterization ofmembrane immunoglobulinsonrainbowtrout lymphocytes.In:ICN-UCIASymposiaonMolecular andCellularBiologyVol.VI,Immunesystem:geneticsandregulation (Ed.by E.E.Sercarz,L.A.HerzenbergandC.F.Fox),AcademicPress,NewYork, p.297-304. Yokoyama,H.O. (1960).Studiesontheorigin,developmentandseasonalvariations in thebloodcellsoftheperch, Perca flavesaens. J.Wildl.Dis.6, 1-103. Yu,M.L.,Sarot,D.A., Filazzola,R.J. &Perlmutter,A. (1970).Effectsofsplenectomy onthe immuneresponseofthebluegourami Triahogaster triohopterus toinfectiouspancreaticnecrosis (IPN)virus.LifeSciences9,749-755. Zaalberg,O.B. (1964).A simplemethodfordetecting singleantibody formingcells. Nature,202,1231. Zapata,A. (1979a).Ultrastructureofgut-associated lymphoid tissue (GALT)of Rutilus rutilus. Morf.normalypathológ.Sec.A.3,23-39. Zapata,A. (1979b).Ultrastructural studyoftheteleostfishkidney.Dev.Comp. Immunol.3,55-65. Zeeman,M.G.&Brindley,W.A. (1975).DDT-induced antibodyimmunosuppression in goldfish.Proc.UtahAcad.Sei. 52,46. Zeeman,M.G.&Brindley,W.A. (1976).DDTtoxicity,symptomologyandeffectsupon hematologyofgoldfish (Carassius auratus). Proc.UtahAcad.Sei. 53,54. Zeeman,M.G.&Brindley,W.A. (1979).EffectsofDDTongoldfish {Carassius immuneresponses.Amer.Zool. 19,879. auratus) Zikan,J. (1974). In:Progess inInmunologyII,ImmunochemicalAspectsVol.1 (Ed.byL.BrentandJ.Holborow)AmericanElsevierCompany,NewYork, p.246-251. 101 APPENDIX I 103 Developmental Irwninobioloyy, © 197? Klseviei'/'.lorth-üGllarid J.H. Solor.on andJ.D. Horton eds, Fiomediaal Preoa, Amsterdam. THE IMMUNESYSTEMOFCYPRINID FISH THEDEVELOPMENTOFCELLULARANDHUMORAL RESPONSIVENESS INTHEROSYBARB (BARBUS CONCHONIUS) G.T.RijkersandW.B.vanMuiswinkel DepartmentofExperimental AnimalMorphology andCell Biology, Agricultural University,Wageningen,TheNetherlands INTRODUCTION Thebasicpropertiesofmammalian lymphocytes-therecognitionofnonselfand thesubsequentdifferentiationandproliferation-appeartobecommontolymphocytes fromallvertebrates.Althoughanumberofinvestigations concerningphylo1 2 genetic aspectsoftheimmuneresponseareknown ' comparatively little informationisavailable aboutstructureoflymphoid organsandfunctionoflymphocyte populations inPoikilothermievertebrates.Mostobservations inthisrespecthave 34 beendoneonAmphibia ' .Somedataaboutthekineticsoftheimmuneresponsein fishhavebeenpublished ' .Thereareindications thatco-operationbetween2 populationsoflymphoid cellsisneededduringthehumoral immuneresponsein 7 8 9 fish ' .Rejectionofallograftsisacommon featureinectothermicvertebrates. Inteleost fishanacuterejectionisobservedwithin2weeks after grafting.The immunological natureoftherejectionisdemonstratedbyasecond-set rejection timeof4-6days Information aboutthedevelopmentoftheimmune systeminfishislackingor 11 12 very scarce ' .Thepresentstudywasperformedtoaddsome informationabout thefunctional developmentofthecellularandhumoral immunesysteminCyprinid fish. MATERIALSANDMETHODS Animals:Rosybarbs (Barbuscohchonius)ofbothsexeswereusedatanagebetween3and30months (table I).Theanimalswerebredatthelaboratoryandkept at 24°Cinfullglassaquaria.Daily feedingwasperformedwithTrouvitpellets (Trouw&Co,TheNetherlands)ortubifexworms.Theywere acclimatized totheexperimental aquariaforatleast1weekbefore injectionorgrafting. Antigen:Sheepredblood cells (SRBC)wereobtained fromtheDepartmentofCell BiologyandGenetics,Erasmus University,Rotterdam.Forimmunizationtheywere washed3timeswithphosphatebuffered saline (PBS)andadjustedtoaconcentrationof2x10/ml. Q Immunization:Allanimalswere immunizedwith 10 SRBCin5ulPBSusinga50ul Hamiltonsyringe.Inpreliminary experiments themosteffective immunizationturned outtobedorsal,intramuscular injection. 105 TABLEI SomecharacteristicsofBarbus conchonius Age inmonths Numberof Standard length* Weight animals (cm+s.e.) (g +_ s.e.) Number ofwhite spleen cells (x 10 +_s.e.) 3 14 1 .45 + 0.06 0 . 0 8 5 + 0.01 4 28 3.27 + 0 . 0 5 1.13 + 0.07 1.4+0.1 2.41 +0.14 2.8 + 0.3 +0.3 1 1 . 2 + 0.2 9 24 4.45 + 0.08 30 3 6.46 + 0 . 0 3 11.1 1.0 + 0 . 2 * * * Standard length is total lengthwithout tail. **Determined in3specimen. Cellsuspensionsandbleeding:AnaesthesiawasperformedbymeansofMS-222 (tricainemethanesulfonate,Sandoz Ine,150mg/1)inaquariumwater.Fishwerebled by cuttingthetail.Theamountofblood obtained fromoneanimal ranged from1pi (4months old)to20ul (9months old).Subsequently thespleenwas removedand brought intocoldHank'sbalanced saltsolution (HBSS,Difco,Detroit) supplementedwith 5%newborncalfserum.Thespleenwasmincedwith scissorsandsqueezed throughanylon-gauze filtertogiveasinglecellsuspension.Serawere storedat -90°C. Complement:Apreliminary experimentwas carriedouttoselectasuitable complementdonor.Weprepared fresh complement fromseveralBarbus species (B.conchonius,B.lateristriga,B.filamentosusandB.nigrofasciatus),grass carpand rainbow trout.Theisologous complementofB.conchonius turnedouttocontaina high levelofhaemolyticfactorstolyseSRBCinthepresenceofB.conchoniusantibodies.Thecomplementwasabsorbedfor15minutesat0°Cwithpacked SRBC.Aftercentrifugationthesupernatantwasabsorbedforanother10minutesat20°C.Aftercentrifugationthesupernatantwascollectedandstoredat-90°C. Serology:Haemolysing(HL)andhaemagglutinating(HA)antibodiesweredetectedin seraofindividual animalsusing standard techniques .Theserawere dilutedwith PBStoyieldastartingvolumeof30ul.Microtitreplates were incubatedfor2-3 hoursat24°C. Plaque forming cell assay:Todetectthepresenceofantibody formingcellsthe 1— — e 14 plaque—techniqueofJerneinanagar-freemediumwasused .Themonolayer plaque assayslideswereproduced according tothetechniqueofMajooret al. . A mixQ tureof0,1mlcellsuspension,0,1mlSRBC (5x10/ml)and10ulcomplementwas preparedandincubatedasamonolayerbetweentwoglass slides.After anincubation of2hoursat24°Ctheslideswerescoredforthenumberofhaemolyticplaques 106 usingadissectionmicroscope.Partofthespleencellsuspensionwasusedfor white cellcounting.Tolysetheerythrocytes thesuspensionwas incubated for 2 x 1 5 minutes in0,7S?„NH4C1 in0,17M tris-HClpH 7,2 16 . Scaletransplantation:Forscale transplantationamodificationoftheHilde17 wasused.Repeated anaesthesiawithMS-222 (150mg/1)causeda manntechnique considerable lossofanimals.Forgraftingandsubsequentdaily inspectionwe placed thefishinapetridish (Fig.1 ) .Thebottomplateofthedishisfilled with cottonwool,drained inaquariumwater.The fish isplaced onthecottonwool and thelidisclosed immediately. Inadditiontooneautograft,asacontrol, threetosixallograftsperrecipientaremade.Grafting isdoneintherowof scalesjustabovethelateral line.Daily inspectionofthescaleswascarriedout using alow-powermicroscope. Fig. 1.A simpledevice for scale transplantation infish. A)Hole tosupply aquariumwater. B)Ovalhole enabling scale transplantation. RESULTS PFC-response tosheeperythrocytes:A groupof64male,9monthsoldanimals were immunizedwithSRBC/Onday 2,4,6, 7,8,9, 11,14and 17afterimmunization 4 animalswerekilled fordetectionofPFC inthespleen.Aplaquewith anantibodyproducing cell inthecenter isshowninfig.2.Thefirstplaques appeared on day4afterimmunization (Fig.3 ) .Thereafter thenumberofplaques increasedand reachedamaximumonday 7 (700PFC/10 whitespleencells (WSCJ). Inthesubsequentperiod thenumberofplaquesdecreased toless than10PFC/10 WSC.Twenty eightdays aftertheprimary injection 18animals received asecondary injection withSRBC.Groupsof3animalswerekilledonday3,5,8and 16after theantigen injectiontodetermine thenumberofPFC's inthespleen.Thespleens of6animals werepooled andtestedonday6.Thefirstplaquesappeared after3days,thepeak responseoccuredonthefifthday (4200PFC/10 WSC).Qnday 16,thelastday tested,therewere 11PFC/10 WSC.A groupof 28,4monthsoldanimalswere immunized withSRBC.Onday 2,4,6, 8,9, 10and 13after theinjectionoftheantigen4 107 MB°¥^0uà* * * $ & . h n St P UqUe Pr dUCed a l a u ef Ip?;en'cen ?PFCr Iro, H ^-0miCr0 ?r!Ph° f*Pcell ^ sheep P 1 °™ing spieencell (PFC) Around thisantibody producing an'area°oflysed erythrocytes rsvisible.Fish erythrocytes (FE)andthrombocytes (T)areaîso 10240 . d 5120 . Ö 2560. O 9MONTHS OLDPRIMARY RESPONSE 5 UJ • 4 MONTHS OLD PRIMARY RESPONSE si 1280 _ m 640 . o 320 . I * / a. / 160 . 80 . 40. 20 . 10. 1 ™ 1 108 3 • • 5 7 1 T 1 1 1 9 11 13 15 17 DAVYS AFTER I NUECTION Fig.3.Primary immuneresponse ofBarbus conchonius toSRBC. Eachpoint representsthemean value from4animals+s.e.. TABLEII Immuneresponse ofBarbus conchonius toSRBC Age inmonths PFC/10 WSC HA-titre 3 30+ 15 4 91 + 43 80+ 53 9 699 +434 987 +683 - Plaque forming cells (PFC)weredetected,7-8 days after injectionof theantigen, thehaemagglutination (HA)titrewas determined onday 13-14.Thedatarepresent themeanvaluefrom 3-4 animals +standard error. animalswere testedforthepresenceofPFCinthespleen.Thefirstplaquesappearedonday8(91PFC/106WSC,seefig.3 ) .Day8alsoturnedouttobethepeak dayofthePFC-response.Duringthesubsequentperiodthenumberofplaquesdecreasedanddroppedunder10PFC/10 WSConday13.Additionallyagroupof3animals (3months old)were testedforthepresenceofPFCinthespleen7daysafter immunizationwithSRBC.Atthat time30PFC/106WSCwere detected (tableII). The animalswerehomogenized inHBSSandcentrifuged afterremovalofthespleen.The HA-titreinthesupernatantofthehomogenate turnedouttobe1:58+21.Comparinganimalswiththeageof4months (young)and9months (old)weseethatthe PFC-peakresponseisreached aboutthesametimeafter immunization (fig. 3 ) . However,thenumberofPFC/10 WSCorPFC/spleenishigherinoldanimals.Furthermore,thetime intervalinwhichPFC'scanbedetectedisshorterforyoung animals. Itisworthwhiletomentionthatsomeyounganimalsdidnotrespondatall, evenatthepeakday.AsvisualizedintableI,3monthsoldanimalshavearelativelyhighnumberofwhite spleencells.TheirpeakPFCresponsewaslowerthanin 4monthsoldanimals. Antibody responsetoSRBC:Seraofimmunizedanimalswereanalysedforthepresenceofagglutinatingandlyticantibodies.HAandHL-titresin9monthsoldanimals reachedamaximum (1:987and1:40respectively)onday14oftheprimary response (fig.4b).TheHA-titresurpassedthedetectionlimit (dilution1:20)for thefirsttimeonday11.TheHL-titrewasalways lowerthantheHA-titre.FollowingasecondaryinjectionofSRBC,28daysafterprimary immunization,HAantibodiesweredetectableforthefirsttimeonday3andreachedamaximumonday5 (1:2229).ElevendaysafterthepeaktheHA-titrestillwas1:80.HLantibodies appearedonday5andamaximumwasreachedonday8 (1:213).HAandHLantibody responsesin4monthsoldfishwereverylow(fig.4a).ThehighestvalueforHA antibodieswasobservedonday13(1:80),thelasttestday.HLantibodies first appearedonday9,amaximumwasreachedonday10 (1:35). Scale transplantation:Seven9monthsoldanimalsandsix6monthsoldanimals 109 b)PRIMARYRESPONSE 9MONTHSOLD a)PRIMARY RESPONSE _, 4 MONTHS OLD 2048 11 13 15 17 19 21 DAYSAFTERINJECTION 10 12 14 16 Fig.4.Primary antibody responseofBarbus conchoniustoSRBC.Eachpointrepresentsthemeanvalueof4animals +_s.e.. wereusedforscale transplantation.After transplantation thefollowing stagesof rejectionoftheallografts were distinguished: a)scalesbecome overgrownbyhyperplastic host-tissue.This resultsinawhite appearance. b) orangepigment cells turn intored. c)blackpigment cellsarebranching. d)clearanceofthehyperplastic host-tissue. Thebeginningoftheclearingphenomenonisconsidered tobethesurvival endpoint 17 (S.E.P.)ofthegraft .Themediansurvival time (M.S.T.)wascalculated fromthe S.E.P.'s.Autografts survivedwellinallcases.TheMSTofBarbus conchonius(8,0 days) fallswithintherangeofMST'sreportedforothercyprinid fish.Barbus filamentosushasanMSTof8,6days,Carrasius auratusof7,2days,bothat25°C . TheMST'sof6and9monthsoldanimals showednosignificantdifference (table III). TABLE III Allogeneic scale graft rejectioninBarbus conchonius Age inmonths 110 Numberofgrafts per experiment Temperature (°C) MedianSurvivalTime (days+ s.e.) 6 17 24 8,3 + 0,2 9 6 24 8,0 + 0,5 DISCUSSION Thepresent studydescribes thefunctionalmaturationoftheimmunesystem in Barbus conchonius.Thehumoral immunesystemwas studiedby injecting the animals with SRBC.Thepeak responsewas determined by counting thenumber ofPFC/10 WSC andmeasuring HAandHL-titres inserum. Itisknown thatthe immunocompetent cells inteleost fishare localized notonly inthespleen,but also inthe thymus 18 andhead-kidney .Therefore theHAandHL titrationdataprovide abetterestimationof the immunecapacity of theanimal than thenumber ofPFC/10 WSC. 19 20 Smithetal. andChiller reported that infish isologous complement orcomplement fromcloselyrelated species isaprerequisite forhaemolysing sensitized SRBC.Ourresultswith isologous complement ofBarbus conchonius confirm theirobservations,however,closely related species asB.filamentosus,B. nigrofasciatus andB. lateristriga failed as asuitable complement donor. Inour experiments serumofSalmogairdneriwas asactive asB.conchonius complement.This isastriking observationbecause these 2species arenotrelated. Theprimary response showed amaximum of 700PFC/10 WSC onday 7afterinjectionofSRBC.This figure iscomparablewith other teleost fishasTilapiamossambica (287 PFC) 6 , Salmo gairdneri (165PFC) 2 0 andPerca fluviatilis (848PFC) 5 . A second injectionwith thesameantigen elicited ahigher PFCresponse (6-foldincrease)atday 5.This illustrates the immunenatureofthePFCresponse.Young animals (4months old)showed a lowerPFCresponse (90PFC/10 WSC)andHAand HL-titres. Itisconcluded that 4months oldanimalshave the competence torespond toSRBCbuttheirhumoral immunesystem isstillnot full-grown.Plaqueswere detected inthespleenof 3months old animals 7days after injectionof theantigen. However,thenumber ofplaqueswasvery low (0-6plaques/spleen). Forstudying cellular immunitywemodified thescale transplantation technique 17 ofHildemann .No significant differencebetween theM.S.T.'s ofadult (9months) andyoung-adult (6months)animalswas detected (table III).Takingallograftrejectionasaprobe forcellular immunity itisconcluded thatthecellular immune system inB.conchonius reached theadultstageat6monthsorearlier. Inviviparous Cymatogaster,newborn fish-with anage of 5months -have anMSTof 13days, 11 whereas theMST foradult animals is 7days .Thedifference inthematuration of cellular responsiveness betweenCymatogaster andBarbusmightbeexplained by a difference inambient temperature (17°Cand 24°Crespectively). Studies inmice indicate thatthematurationofhumoral responsiveness takesat least 2months (ref. 21,22andownobservations).Therefore itistempting tosay thatthedevelopment of the immuneresponsiveness incyprinid fish iscomparable withthesameprocess inmammals taking intoaccount thetemperature difference betweencold andwarmblooded vertebrates. 111 ACKNOWLEDGMENTS Weare grateful toDrs.L.P.M.Timmermans,L.H.P.M.Rademakers andE.Egberts for reading themanuscript, toMr.W.J.A.Valenfordrawing thefigures andto Mrs.A.E.M.Tapilaha-Wattilete for typing. REFERENCES 1. Good,R.A.andPapermaster,B.W. (1964)Adv. Immunol.4,1-115. 2. Cooper,E.L. (1973)inContemporary Topics inImmunobiologyVol.2(Davies, A.J.S. and Carter,R.L.,eds.)pp. 13-38,PlenumPress,NewYork. 3. Manning,M.J.andHorton,J.D. (1969)J.Embryol.Exp.Morph.22,265-277. 4. Turpen,J_B.andVolpe,E.P. (1975)Amer.Zool. 15,51-61. 5. Pontius,H. andAmbrosius,H. (1972)ActaBiol.Med.Germ. 29,319-339. 6. Sailendri,K.-andMuthukkaruppan,Vr. (1975)J. Exp.Zool. 191,371-382. 7. Siu-Stolen,J. andMäkela,0. (1975)Nature 254,718-719. 8. Yocum,D., Cuchens,M. and Clem,L.W. (1975)J. Immunol. 114,925-927. 9. Hildemann,W.H.and Cooper,E.L. (1963)Fred.Proc. 22,1145-1151. 10. Hildemann,W.H.andHaas,R. (1960)J. Cell.Comp.Phys.55,227-233 11. Triplett,E.L.and Barrymore,S. (1960)Biol.Bull. 118,463-471. 12. Kallman,K.D. (1970)Transpl.Proc.2,263-271. 13. Hudson,L.andHay,F.C. (1976)inPractical Immunology pp. 125-137,Blackwell ScientificPublications,Oxford. 14. Zaalberg,O.B.,vanderMeul,V.A.andvanTwisk,M.J. (1968)J.Immunol. 100,451-458. 15. Majoor,G.B.van 'tVeen,M.B,and Zaalberg,O.B. (1975)J. Immunol.Methods 7,301-304. 16. Boyle,W. (1968)Transplantation 6,761-764. 17. Hildemann,W.H. (1957)Ann.NYAc.Sciences 64,775-791. 18. Corbel.M.J. (1975)J.FishBiol.7,539-563. 19. Chiller,J.M., Hodgins,H.O.,Chambers,V.C.andWeiser,R.S. (1969) J. Immunol. 102,1202-1207. 20. Smith,A.M.,Potter,M. andMerchant,E.B. (1967)J. Immunol.99,876-882. 21. Shalaby,M.R.andAuerbach,R. (1973)Differentiation 1,167-171. 22. Haaijman,J.J., Schuit,H.R.E.and Hijmans,W. (1977)Immunology 32,427-434. 112 APPENDIX II 113 Journal of Immunological Methods, 33 (1980) 79—86 © Elsevier/North-Holland Biomedical Press THE HAEMOLYTIC PLAQUE ASSAY IN CARP (CYPRINUS CARPIO) G.T. RIJKERS, E.M.H. FREDERIX-WOLTERS and W.B. VAN MUISWINKEL Department of Experimental Animal Morphology and Cell Biology, Agricultural University, Zodiac, Marijkeweg 40, 6709 PG Wageningen, The Netherlands (Received 31 July 1979, accepted 21 October 1979) A haemolytic plaque assay for the enumeration of antibody forming cells in the carp (Cyprinus carpio) is described. Serum of bream (Abramis brama) turned out to be a more reliable complement source than allogeneic carp serum. The addition of 3—5% bream serum to a mixture of immune lymphoid carp cells and xenogeneic erythrocytes gave optimal results. Higher amounts of bream complement inhibited plaque formation. Plaque formation was also suppressed when inactive or heat-inactivated bream or carp serum was added to a mixture containing normal bream complement. INTRODUCTION For many years the plaque assay of Jerne and Nordin has been a useful tool for in vitro quantitation of antibody secreting cells or plaque forming cells (PFC). Although it was originally developed to detect cells which secrete antibodies against cellular surface antigens of erythrocytes, it has also been used to detect PFC against soluble antigens by coating indicator erythrocytes with proteins, polysaccharides or haptens (Jerne et al., 1974). Recently the technique has been adapted for use with cells from vertebrate classes other than mammals such as amphibians (Horton et al., 1976), reptiles (Rothe and Ambrosius, 1968; Kanakimba and Muthukkaruppan, 1972) and birds (Jankovic et al., 1972). The haemolytic plaque assay has been used in the following fish species: blue gill, Lepomis macrochirus (Smith et al., 1967), rainbow trout, Salmo gairdneri (Chiller et al., 1969), perch, Perca fluviatilis (Pontius and Ambrosius, 1972), Mozambique mouthbrooder, Tilapia mossambica (Sailendri and Muthukkaruppan, 1975), goldfish, Carassius auratus (Warr et al., 1977) and the rosy barb,Barbus conchonius (Rijkers and Van Muiswinkel, 1977). Carp, (Cyprinus carpio) together with Tilapia and a few salmonids constitute the basis for large scale fish culture (Weatherly and Cogger, 1977). Address for correspondence: Ir. G.T. Rijkers, Department of Experimental Animal Morphology and Cell Biology, Agricultural University, Zodiac, Marijkeweg 40, 6709 PG Wageningen, The Netherlands. 115 For economical reasons the study of the immune system of carp under mass culturing conditions is of great importance (Avtalion et al., 1976; Fiebig and Ambrosius, 1977; Rijkers et al., 1980). Research has been hampered by lack of a sensitive method for monitoring the humoral immune response in carp. In the present study a haemolytic plaque assay in liquid medium is described. MATERIALS AND METHODS Animals Carp (Cyprinus carpio), ranging from 6 to 18 months of age and 75 to 300 g in weight, were either bred at the laboratory or obtained from the Organisation for Improvement of Inland Fisheries (Nieuwegein, The Netherlands). They were kept in aquaria with running tap water at temperatures of 18 or 24°C and fed daily with pelleted food (Trouvit K30, Trouw and Co., Putten, The Netherlands). Swiss (Cpb : SE(S)) random-bred female mice, 20 weeks old were used. They were purchased from the Centre for Laboratory Animals (Wageningen, The Netherlands). Sheep red blood cells (SRBC) Blood was collected from the jugular vein of 6 sheep into heparinised vacutainers® (B-D). The blood samples were pooled and an equal volume of Alsever's solution added. The SRBC were stored at 4°C for a maximum period of 2 weeks. For the plaque assay, SRBC were washed 3 times with phosphate buffered saline (PBS) and finally diluted in Hank's balanced salt solution (HBSS, Difco, Detroit, U.S.A.) to a concentration of 5 X10 8 SRBC/ml. HBSS was supplemented with 5% newborn calf serum (NCS) and antibiotics (40 I.U. mycostatine, 200 I.U. penicillin and 0.2 mg streptomycin per 100 ml). Carp were injected intramuscularly (i.m.) in the dorsal region with 10 9 SRBC (0.05 ml of 2 X 10 1 0 SRBC/ml PBS). Mice were injected intraperitoneally (i.p.) with 5 X 10 8 SRBC. Complement sources Pooled sera of pig, goat, cow, sheep, horse and dog were obtained from the Foundation for Blood Group Studies, Wageningen. The chicken serum was a gift from the Department of Animal Husbandry, Agricultural University, Wageningen. The amphibian and fish sera and sera or coelomic fluid of invertebrates (indicated in Table 1) were collected from animals kept in our laboratory. Bream serum was collected at the Tjeukemeer Field Station of the Limnological Institute (Oosterzee, The Netherlands). Blood was collected by caudal puncture and allowed to clot for 2 h at 0°C. Sera with a high natural haemolytic activity against SRBC were absorbed for 20 min at 0°C with an equal volume of packed SRBC. All sera were stored at —20°C. Inactivation of bream or carp complement was accomplished by incubating serum for 10—30 min at 42°C. 116 TABLE 1 INFLUENCE OF COMPLEMENT SOURCE ON THE DEVELOPMENT OF PLAQUES BY IMMUNE CARP CELLS Complement activity was determined in the haemolytic plaque assay with a head-kidney suspension of carp immunised with 1 0 9 SRBC. Complement source Plaques Positive/total Mammals including rabbit, guinea pig, man, cow, goat, sheep, horse, dog — pooled sera — pooled sera Birds chicken Amphibia axolotl Fish carp bream chub nase barbel rosy barb goldfish grass carp roach bleak tench rainbow trout labyrinthic catfish perch Invertebrates earthworm a locust a pond snail a Ambystoma mexicanum Cyprinus carpio Abramis brama Leuciscus cephalus Chondrostoma nasus Barbus barbus Barbusconchonius Carassius auratus Ctenopharyngodon idella Rutilus rutilus Alburnus alburnus Tinea tinea Salmo gairdneri Clarias lazera — + + + + + — — — — — — — — Perca fluviatilis — Lumbricus terrestris Locusta migratoria Lymnaea stagnalis — — — 0/3 31/56 55/58 5/8 2/2 2/4 pooled sera 0/7 0/4 0/4 0/3 0/3 pooled sera 0/5 0/3 pooled coelomic fluid pooled coelomic fluid pooled haemolymph Haemolymph or coelomic fluid tested. Plaque assay Cell suspensions were prepared as described previously (Rijkers and Van Muiswinkel, 1977) and suspended in HBSS supplemented with NCS and antibiotics. The plaque technique in agar-free medium as described by Zaalberg et al. (1968) was used. Monolayer plaque assay slides were produced according to the technique of Majoor et al. (1975). Briefly, 0.1 ml cell suspension, 0.1 ml SRBC (5 X10 8 /ml) and complement were mixed and incubated between two glass slides at 25°C for 2 h. The number of haemolytic plaques was scored using a low-power dissecting microscope with dark117 field illumination. Doubtful plaques were examined under a high-power phase-contrast microscope. RESULTS / Complement sources Sera of 28 animal species were tested for their ability to lyse SRBC in the plaque assay with immune carp cells. Only five complement sources were capable of lysing sensitised SRBC (Table 1). These were sera from carp, barbel (Barbus barbus), bream (Abramis brama), chub (Leuciscus cephalus) and nase (Chondrostoma nasus), all fish belonging to the teleost family of the Cyprinidae. Among the sera with complement activity, bream serum was superior even to allogeneic carp serum. Fifty-five out of 58 individually tested bream sera were able to lyse sensitised SRBC. A plaque developed with bream serum is shown in Fig. 1. The highest number of plaques was observed with cells from the main lymphoid organs of carp (head-kidney, kidney, spleen) when bream serum was used. Complement concentration The optimal complement concentration in the plaque assay of carp was Fig. 1. A phase-contrast photomicrograph of a plaque forming cell (PFC) from the headkidney of carp. Several carp red blood cells (CRBC) and head-kidney leucocytes (L) are found within the area of lysed sheep red blood cells. 118 determined by adding increasing amounts of bream serum to a mixture of SRBC and head-kidney cells of an immunised carp (Fig. 2). Low numbers of haemolytic plaques were developed when 1% bream serum was added. Three to 5% serum appeared to be optimal, while higher concentrations inhibited plaque formation. In a comparative experiment the complement dependence of SRBC lysis after sensitisation with mouse antibody was determined using rabbit serum as complement source. The minimal amount of rabbit complement needed to develop any plaques was 3% (Fig. 2). Higher plaque numbers were observed with increasing complement concentration (optimum 10%). Inhibition with super-optimal complement levels as observed in carp was not found in mice. 200 200 150 100 50 5 10 PERCENTAGE COMPLEMENT 0 5 10 15 PERCENTAGE INACTIVE BREAM SERUM Fig. 2. Effect of complement concentration on number of plaques. • = Plaques developed by a head-kidney cell suspension of carp, injected twice with 10 9 sheep red blood cells (SRBC) i.m. Secondary response, 10 days after injection. Pooled bream serum was used as complement source. 0 = Direct plaques developed by a spleen cell suspension of mice, immunised with 5 X1 0 8 SRBC i.p. Primary response, 4 days after injection. Pooled rabbit serum was used as complement source. Each point represents the arithmetic mean (±1 standard error, n = 4) of the number of plaques in 0.2 ml cell suspension. Fig. 3 . Inhibition of plaque formation in carp by inactive bream serum. Plaques developed by a head-kidney cell suspension of carp, injected twice with 1 0 9 sheep red blood cells (SRBC) i.m. Secondary response, 10 days after injection. Increasing amounts pooled heatinactivated (20 min, 42°C) bream serum (•) or 2 individual inactive normal bream sera (o, a) were added to a mixture containing lymphoid cells, SRBC and 5% bream serum. Each point represents the arithmetic mean (±1 standard error, n = 4) of the number of plaques in 0.2 ml cell suspension. 119 PFC inhibition In carp, the inhibition of plaque formation was also observed when normal inactive or heat-inactivated bream serum was added to a mixture containing optimal bream complement concentration (Fig. 3). Inhibition was more pronounced when natural inactive bream serum was used. PFC inhibition was also observed when carp serum was used as complement source; 20% inactive or inactivated carp serum added to a mixture containing 5% active carp serum completely inhibits plaque formation. In mice, the addition of inactivated rabbit complement did not alter the number of plaques developed by an optimal complement concentration. DISCUSSION In all plaque assays for lower vertebrates, allogeneic complement is used, with the exception of the clawed toad, Xenopus laevis, where guinea pig complement is satisfactory (Horton et al., 1976). Conversely, amphibian sera are able to serve as complement source for SRBC sensitised with rabbitanti-SRBC antibodies (Ruben et al., 1977). Other claims for the cooperation of lower vertebrate antibodies with mammalian complement have not been tested in the haemolytic plaque assay (Inebi and Home, 1979). In the present study in carp, xenogeneic serum from a related species, the bream, was used as complement source. Ability to haemolyse sensitised SRBC in vitro was present in 95% of the bream sera tested, while for carp the figure was only 50%. Whereas mammalian complement requires a temperature of 56°Cfor heatinactivation, complement of lower vertebrates is more heat labile. For teleost fishes inactivation temperatures from 42 to 53°Care reported (Feldman and Miller, 1960; Hodgins et al., 1967; Chiller et al., 1969; Gigli and Austin, 1971). In our experiments sera of bream and carp lost the ability to develop plaques after incubation at 42°C for 10 and 30 min respectively. Surprisingly, incubation for 60 min at 37°C had no effect upon the resulting number of plaques. Reduced plaque numbers may be due to failure of antibody secretion by plasma cells or inhibition of complement-mediated haemolysis. In a tube haemolysis experiment, with SRBC sensitised with carp-anti-SRBC antibodies, 3—5% bream serum was optimal, while higher concentrations inhibited haemolysis as measured by 541 nm absorbance. This suggests that reduced plaque numbers may be caused by inhibition of complement activity. In mice, the addition of inactivated serum to a mixture of SRBC, immune spleen cells and complement had no effect upon the number of plaques. In frogs, serum complement levels are reduced during hibernation (Green and Cohen, 1977). However, addition of serum from hibernating frogs had no inhibitory effect on the high complement titres observed in sera from non-hibernating animals. Thus, inhibition of plaque formation in carp by 120 inactive serum seems to be a unique finding. With super-optimal complement concentrations reduced plaque numbers were also observed. Since complement cannot be the limiting factor an inhibiting or "anti-complementary" factor must be assumed. This assumption is strengthened by the finding that when the concentration of "anti-complementary" factor israised artificially by addition of inactive or inactivated serum to an optimal amount of active complement, the same suppression phenomenon is observed. The nature of this 'anti-complementary' factor is not clear. It may be that specific inhibitors resembling the C r esterase inhibitor or C 3b -inactivator of mammals, are present in higher concentrations. While individual carp sera may be a reasonable complement source in the haemolytic plaque assay of carp, 4 vol. of inactive carp serum added to 1 vol. active carp serum completely inhibit plaque formation. The development of haemolytic plaques was completely inhibited when equal volumes of pooled bream complement and naturally inactive bream serum were mixed. Therefore it is not advisable to pool fish sera as a complement source. Although complement is critical, the haemolytic plaque assay in carp presented here offers the possibility of monitoring the immune response in this species in a sensitive and quantitative way. ACKNOWLEDGEMENTS We thank Professor J.F. Jongkind and Dr. J.L. Molenaar (General Hospital, Delft) for advice during the performance of this study and preparation of the manuscript. We thank Mr. R. van Oosterom for skilful technical assistance, Mr. M.G.B. Nieuwland and Mr. W. Hazeleger (Dept. of Animal Husbandry, Agricultural University) for collecting the sheep erythrocytes, Dr. W. van Densen (Limnological Institute, Tjeukemeer) for providing bream serum, Mr. W.J.A. Valen for drawing the figures and Mrs. G. van Malsen-Eggink for typing the manuscript. REFERENCES Avtalion, R.R., E. Weiss and T. Moalem, 1976, in: Comparative Immunology, ed. J.J. Marchalonis (Blackwell Scientific Publications, Oxford) p. 227. Chiller, J.M., H.O. Hodgins and R.S. Weiser, 1969, J. Immunol. 102, 1202. Feldman, H.A. and L.T. Miller, 1960, Science 1 3 1 , 3 5 . Fiebig, H. and H. Ambrosius, 1977, Acta Biol. Med. Germ. 36, 79. Gigli, I. and K.F. Austen, 1 9 7 1 , Ann. Rev. Microbiol. 25, 309. Green, N. and N. Cohen, 1977, Dev. Comp. Immunol. 1, 59. Hodgins, H.O., R.S. Weiser and G.J. Ridgway, 1967, J. Immunol. 9, 534. Horton, J.D., J.J. Rimmer and T.L. Horton, 1976, J. Exp. Zool. 196, 2 4 3 . Inebi, W. and M.T. Home, 1979, J. Fish Dis. 2, 159. Jankovic, B.D., K. Isakovic and S. Petrovic, 1972, Eur. J. Immunol. 2, 18. 121 Jerne, N.K., C. Henry, A.A. Nordin, H. Fuji, A.M.C. Koros and I. Lefkovits, 1974, Transplant. Rev. 18, 130. Kanakimba, P. and VR. Muthukkaruppan, 1972, J. Immunol. 109, 4 1 5 . Majoor, G.B., M.B. Van 't Veer and O.B. Zaalberg, 1975, J. Immunol. Methods 7, 3 0 1 . Pontius, H. and H. Ambrosius, 1972, Acta Biol. Med. Germ. 29, 319. Rijkers, G.T. and W.B. Van Muiswinkel, 1977, in: Developmental Immunobiology, eds. J.B. Solomon and J.D. Horton (Elsevier/North-Holland, Amsterdam) p. 2 3 3 . Rijkers, G.T., A.G. Teunissen, R. Van Oosterom and W.B. Van Muiswinkel, 1980, Aquaculture, in press. Rothe, F. and H. Ambrosius, 1968, Acta Biol. Med. Germ. 2 1 , 525. Ruben, L.N., B.F. Edwards and J. Rising, 1977, Experientia 3 3 , 1522. Sailendri, K. and VR. Muthukkaruppan, 1975, J. Exp. Zool. 1 9 1 , 3 7 1 . Smith, A.M., M. Potter and E.B. Merchant, 1967, J. Immunol. 99, 876. Warr, G.W., D. DeLuca, J.M. Decker, J.J. Marchalonis and L.N. Ruben, 1977, in: Developmental Immunobiology, eds. J.B. Solomon and J.D. Horton (Elsevier/NorthHolland, Amsterdam) p. 2 4 1 . Weatherley, A.H. and B.M.G. Cogger, 1977, Science 197, 427. Zaalberg, O.B., V.A. Van der Meul and M.J. Van Twisk, 1968, J. Immunol. 100, 4 5 1 . 122 APPENDIX I I I 123 The immune system of cyprinid fish. Kineticsand temperature dependence of antibody-producing cells incarp(Cyprinus carpio) G.T. RIJKERS, ELIZABETH M. H.FREDERIX-WOLTERS& W.B. VAN MUISWINKEL Departmentof ExperimentalAnimal MorphologyandC'ellBiologyAgriculturalUniversity.Wageningen, TheNetherlands SUIvMARY After immunizationofcarpwith sheepredbloodcells spleenaccountsfor only 51ofthetotalnumberofplaque forming cells (PFC). Inaddition, thymus,peripheral bloodandheartcontainedlownumbersofPFC(<0.5, 1and0.51respectively).Pronephrosandmesonephroswerethemajorantibodyproducingorgans (53and4050oftotalPFCrespectively).Thetemperaturedependenceoftheantibody forming cellresponseinspleen,pronephros andmesonephroswasstudiedinanimalskeptat12-24C.Loweringtemperatures inducedadelayinthepeakoftheprimaryresponsebuthadnoeffect onthemagnitudeoftheresponse.Thetemperature-peakdayrelationshipindicated thattherearestepsintheprimary immune responseofcarpdifferingintemperature sensitivity.Theanamnesticcharacterofthesecondary responsewasclearly demonstratedat24and20Cbutlostat18C. INTRODUCTION Bothcellularandhumoral immune responsesinPoikilothermie vertebratesare temperature dependent.Atlowtemperatures allograft rejectionproceedsatarelative slowrate (Hildemann, 1957;Cohen, 1966;Borysenko, 1970)andantibodyproductionisdiminished (Pliszka,1939;Ambrosius&Schäker, 1964;Harris,1973;Paterson& Fryer, 1974)orcompletely absent (Nybelin, 1935;Barrow, 1955;Avtalion, 1969a,b; Avtalion,Malik,Lefler&Katz, 1970). Upperandlowertemperature limitsofthe immune responseareclosely relatedtotheecological temperature rangeofthespecies considered (Ridgway,Hodgins&Klontz, 1966;Tait,1969;O'Neill, 1980).The relationship betweentemperatureandallograft survival timeingoldfish indicated that therewereatleast2temperature sensitive stagesintheprocessofallograft rejection (Hildemann, 1957).Accordingtostudiesindifferent animals,thefirst phaseoftheimmune response includingantigenprocessingandrecognitionisrelative temperature independent (Cone&Marchalonis, 1972;Avtalion,Wojdani,Malik, Shahrabani&Duczyminer, 1973).Thefirsttemperature sensitive eventmightbethe subsequent interactionbetweenT-andB-like cells (Avtalion,Weiss&Moalem, 1976; Marchalonis, 1977;Cuchens&Clem, 1977).Apossibleexplanationisablockin "T-helper"activity (Cuchens,Mclean&Clem, 1976)oran,increasein'T-suppressor" activityatlowtemperatures (Avtalion,Wishkovsky&Kati, 1980).Thefollowing cellularmultiplicationanddifferentiationofB-like celjlsareconsideredtobe temperature independent (Avtalionetal., 1973).Accordingtothesameauthorsthe second temperature sensitiveeventisthesynthesisandreleaseofantibodiesby 125 plasmacells (Avtalionetal., 1973). Most studiesmentionedabovearecenteredaroundtheinfluenceoftemperature ontheeffectorphaseoftheimmune response,e.g.antibody levelsinserumor allograftsurvivaltime.Inthispaperthekineticsoftheplaque formingcell responseatdifferent temperatureswasstudiedinordertoobtainmore insightin thetemperaturedependenceoftheinductiveandproliferativephaseofthehumoral immunerespuseinpoikilotherms. MATERIALSANDMETHODS Animals Outbredcarp (Cyprinus oarpio) wereobtained fromtheOrganizationforImprovementofInlandFisheries (O.V.B.,Nieuwegein,TheNetherlands)orbredinourlaboratory.Animals from6and18monthsold,weighing 75-300g,wereused.Theywerekept inaquariawithaeratedwater (pH7.4-7.8,N0 ? <0.3ppm,4DH)andfeddailyon pelleteddryfood (K30,Trouw&Co,Putten,TheNetherlands).Animalswerekeptat 12,16,18,20or24C.Theywereacclimatizedforatleast2weeksateachtemperaturebeforeantigeninjection. Antigen and immunization Sheepredbloodcells (SRBC)wereobtained from6animals.Pooledbloodwas mixedwithanequalvolumeofAlsever's solution.Thecellswerewashed3times withphosphatebufferedsaline (PBS,pH7.2)beforeuse.Carpwere immunizedby g anintramuscular (i.m.)injectionof10 SRBCin0.05mlPBSinthedorsalregion. Plaque forming cell assay Plaque formingcells (PFC)weredetectedusingthemethoddescribedpreviously (Rijkers,Frederix-Wolters&vanMuiswinkel, 1980a).Bream (Abramis brama) serum wasusedascomplement source.Plaquesweredevelopedat25Cfor2hunless stated otherwise.Viabilityoflymphoidcellswasdeterminedwiththedyeexclusionassay (0.21trypanblueinPBS). RESULTS Organ distribution of PFC Inordertoobtainanideaabouttherelativeimportanceofdifferent lymphoid organsofcarp,thenumberofPFCinspleen,pronephros,mesonephros,heart, peripheralblood,thymus,liverandintestinewasdetermined. Pronephrosandmesonephroscontributeforabout90°softhetotalPFCnumberafteri.m. injectionwith SRBC (Table I). Spleenaccountsonlyforabout 5°swhilethymus,heartandperipheral bloodcontainverylowpercentagesofPFC(<H ) .PFCwerenotdetectedinliver andintestine.Similarresultswereobtainedwhencarpwere injected intravenously 126 TABLEI. Organdistributionofplaque formingcells (PFC)incarpat20C. Organ PFC/10 whitecells Thymus 0. 3+0. PFC/organ 04* %oftotalPFC 120 < 0.5 17,100 5 Pronephros 548 +30 184,000 53 Mesonephros 87 +4 138,500 40 Heart 71 +7 1,950 0.5 Peripheralblood 15 +1 3,000 1 - Spleen 25 +1 Liver 0 0 Intestine 0 0 9 Animalswere injected twicewith 10 SRBC (i.m.)withanintervalof 1month. ThenumberofPFCwasdetermined 12daysafter thelastinjection (peakof theresponse). *Arithmeticmean+ 1S.E. (n=4). withthesameantigen.Afteroral administrationofSRBCconsiderable numbersof PFCweredetectedinpronephrosandmesonephrosandtoalesserdegreeinspleen butnotinintestine. PFC kinetica Thenumberofantibody formingcellsinsuspensionsofspleen,pronephrosand mesonephroswasdeterminedatsuccesive days afteri.m.injectionwith10 SRBCin carpwhichwerekeptat24°C (Fig. 1).ThefirstPFCcouldbedetectedatday6. g Peak responsewasreachedonday9(93+43PFC/10 WCinpronephros). Following a secondary injection1monthafterthefirst,PFCwerealreadyobservedonday3. Thepeakoftheresponseonday8wasa50-foldhigher thanintheprimary response (4800+2360PFC/10 WCinpronephros).PFCnumbers diminishedintheperiod after day8butupto20daysafter injectionPFCwere observed. To assesspeakprimaryandsecondary anti-SRBC responseincarpwhichwere keptat20C,animalswere testedonafewselected days (Fig.2 ) .Peakofboth theprimary andsecondary responsewasreached around 12daysafter injection. The secondary injection gaverisetoonly10timesmorePFC(95+28and1104+_ 582PFC/10 WCinpronephros respectively). Incarpkeptat18°C,thefirstPFCappearedinspleen,pronephrosandmesoq nephros 11days afterprimary injectionwith 10 SRBCi.m.(Fig. 3).Peak response was reachedonday17(379+185PFC/10 WCinpronephros).AfterwardsPFCnumbers rapidly declinedbutPFCremainedpresentinpronephrosupto30days afterinjection.Whenasecondary injectionwas given45days afterprimary thisdidnot result inasignificant higherpeak responseinmesonephrosorpronephros (304+_101PFC/ 10 WC),although firstPFCappeared3-4daysearlierandremainedforalonger 127 period.Peaksecondaryresponsewasreachedinspleenandmesonephrosonday15, inpronephrosonday 17. At 16C,maximumnumbersofPFCcouldbedetectedinspleen, pronephros (131 +_29PFC/10 WC)andmesonephrosataround27daysafterinjection(Fig. 4 ) . 1" daysafterinjection Fig. 1. Kineticsofprimary (closed symbols)andsecondary (opensymbols) anti-SRBC response inspleen (a),pronephros (b)andmesonephros (c)ofcarp (6monthsold)keptat24C.Animalswere injected twicewith 10 SRBC.The intervalbetween2i.m. injectionswas 1month.PFC/10 WC=plaqueforming cellsper 10 viablewhitecells.Eachpointrepresents thearithmeticmean + 1S.E. (n=4). Ü 10*. daysafter injection Fig. 2. Kineticsofprimary (closed symbols)and secondary (opensymbols) anti-SRBC response inspleen (a),pronephros (b)andmesonephros (c)ofcarp (6monthsold)keptat20°C.Animalswere injected twicewith 10 SRBC.The intervalbetween2i.m. injectionswas lmonth.PFC/IO WC=plaqueforming cellsper 10 viablewhitecells.Eachpointrepresents thearithmeticmean + lS.E. (n=4). 128 10'_ 'O 3 -, a. 10'. 10'. -H 10 25 30 daysafter injection Fig.3. Kineticsofprimary (closed symbols)andsecondary (opensymbols) anti-SRBC response inspleen (a),pronephros (b)andmesonephros Lc) ofcarp (18monthsold)keptat 18°C.Animalswere injected twicewith 10 SRBC.The intervalbetween2i.m. injectionswas45days.PFC/10 WC=plaqueforming cellsper 10 viablewhitecells.Eachpointrepresents thearithmeticmean + 1S.E. (n-4). 129 10 2 _ ü ä I ' '' ' I' 25 36 25 "I 30 25 daysafterinjection Fig.4. Kineticsofprimaryanti-SRBC response inspleen (a),pronephros (b) andmesonephros (c)ofcarp (6monthsold)keptat 16C,Animalswere i.m. injected with 10 SRBC.PFC/10 WC=plaque formingcellsper 10 viablewhitecells.Each pointrepresents thearithmeticmean+ 1S.E. (n=4). n -1 55 60 50 50after injection days Fig.5. Kineticsofprimaryanti-SRBC response inspleen (a),pronephros (b) andmesonephros (c)ofcarp (6monthsold)keptat 12C,Animalswere i.m. injected with 10 SRBC.PFC/10 WC=plaque formingcellsper 10 viablewhitecells.Each pointrepresents thearithmeticmean+ 1S.E. (n=4). Peakprimaryresponsewasreachedaroundday49incarpkeptat12C (91+ 35PFC/106 WCinpronephros;Fig. 5 ) . ToascertaintheobservationthatcarpareabletodevelopPFCatlowtemperatures,PFCslideswereincubatedat16or12°C-ambienttemperatureofthe animalsconsidered-insteadoftheususal25°Cforplaqueincubation.Itappeared 130 55 thatbothat16and12°Cplaqueswere formed.However,thespeedofdevelopment waslowandattainedlevelsdidnotmeetvaluesobtainedatthe25Cincubation (Table II).Itisconcludedthatantibodyproductionandsecretioncontinuesat lowtemperatures,butatareducedrate. TABLEII.Effectof incubationtemperatureonplaquedevelopment. Ambient temperature ( C) PFC incubation PFC incubation temperature (C) time (hours) PFC/10 whitecells i n pronephros 16 25 2 61 + 20* 16 16 5 26 + 20 12 25 2 19 + 3 12 12 5 4 + 1 22 _6 + 1 12 12 Animalskeptat 16Cwere tested forthepresenceofplaqueformingcells (PFC) inpronephros 25daysafterani.m.injectionof 10 SRBC.Animalskeptat 12C were tested 44daysafterinjection. *Arithmeticmean +_ 1S.E. (n=4). Insummarizingtheresultsincanbeseenthatwithloweredtemperaturesthe peakoftheprimary responseindelayed (Fig.6)butthemagnitudeoftheresponse isunaltered.Theanamnesticcharacterofthesecondaryresponsehowever,is graduallylostwhenloweringwatertemperatures. DISCUSSION Theroleofthepronephrosinantibodyproductioninteleostfishhasbeen demonstratedinanumberofstudies (Smith,Potter&Merchant,1967;Chiller, Hodgins,Chambers&Weiser,1969;Chiller,Hodgins&Weiser,1969;Pontius& Ambrosius,1972;Sailendri&Muthukkaruppan, 1975).Inthetoad Bufo mavinus ,plasma cellsweremostabundantinintertubular lymphoidtissueofthekidneyafterinjectionwithbovineserumalbumin (BSA) (Cowden,Dyer,Gebhardt.&Volpe, 1968). Itwassuggestedthatalsoinotherlowervertebratesthekidneymightbethe majorsiteforantibodyproduction.However,inthetortoise Agrionemys hovsfieldii, thekidneyplayednoroleinantibodyproductionafterimmunizationwithSRBC (Rothe&Ambrosius, 1968).Inrainbowtrout [Salmo Gairdneri) PFCwerefoundin mesonephrosafterimmunizationwith0-antigenofthebacterium Yersinia ruakeri, butnumberswerenotashighasinspleen (Anderson, 1978). Inperch (Perca fluviatilis) mesonephroscontained lowerPFCnumbersthanspleenandpronephros after injectionwithSRBC (Pontius&Ambrosius, 1972). Ingoldfish [Carassius auratus) 131 50-, 40. I 30. E a 20 10- 10 Fig. 6. 15 20 watertemperature(°C) 25 Temperature dependenceofhumoral anti-SRBC response incarp. pronephrosandmesonephrosaremajorsitesofantibodyproductionagainst Salmonella. typhi (Neale&Chavin, 1971). Inourexperimentswithcarp,highPFCnumberswere foundinmesonephros.Thiso.-gantogetherwithpronephros contributed for90°;of thetotalPFCillustratingtheimportanceofthekidneyasawholeforantibody formation. InmosthigherandlowervertebratesthespleenisanimportantPFCcontaining organ.IncarponlylowPFCnumberswerefoundinspleen.However,itcannotbe excludedthatthisorganplaysanimportantroleinthedifferentiationofB-like cellsintoplasmacells.SincePFCwereobservedinperipheralblood itispossible thatproliferationanddifferentiationofB-likecellstakesplaceinspleenand thatmaturatingplasmacellsmigratethroughthebloodstreamandsubsequentlyhome inotherorgans (e.g.kidney). Toverifythisassumptionsplenectomyshouldbe performed.Resultsofsplenectomyexperiments inotherteleostfishareconflicting. Splenectomy ingraysnapper (Lutjanus gviseue) didnotaffecttheantibodyresponse againstBSA (Ferren,1967).StudiesofYu,Sarot,Filazzola&Perlmutter (1970)on theeffectofsplenectomy inbluegourami (Tvichogastev triohopterus) suggestthat thespleenisamajorlymphoidorganinthisspecies.Unfortunatelysplenectomyin carpisnotpossiblebecausethespleenisinterspersedwithliverandpancreasand inmostcasesnotadistinctorganbutfragmentedalongtheintestine. Harris (1973)showedthatdace [Leuoisaus 132 leuciscus) arecapableofproducing antibodiesovertheircompleteenvironmentaltemperaturerange (2-18C ) .Theinfluenceoftemperatureuponantibodyproductioncouldbeageneralphysiological effectasdescribed forothermetabolicprocesses (Huisman,1974;Brett,1979). A logarithmicrelationbetweentemperatureandoxygenconsumptionorstandard metabolismwasobservedbyBrett (1976). Inourexperimentsitturnedoutthat a linearrelationshipexistsbetweenpeakdayandlowtemperatures (12-18C)but theslopeofthegraphchangedat20Candhigher (Fig.6 ) .Thepossibilityofa generalphysiological effectoftemperatureontheimmuneresponseasawholeis thereforeunlikely.Inthisrespectourresultsareinagreementwiththeideas ofAvtalionetal. (1976)andMarchalonis (1977)indicatingthatthereareless andmoretemperature sensitivestepsintheimmuneresponse. Inallinstancesplaqueassayslideswereincubatedat25C.Forcarpkept atlowtemperatures (12-16C)thisiswellbeyondtheirambienttemperature.To assurethatcarpwerecapableofperforminganimmuneresponseat 12and 16C PFCslideswerealsoincubatedatthesetemperatures.About 30%oftheplaques werevisualizedatlowtemperaturescomparedwiththesituationat25C.Itis admittedthatalongerincubationperiod forplaquedevelopmentwasneeded.It ispossiblethatat 12ChigherPFCnumbers canbereached in vivo becauseour in vitro systemwasnotdevisedforlongincubationperiods. IncontrasttoAvtalionetal. (1970)whodidnotshowantibodyformation incarpat 12Cusingtitrationtechniques,wewereabletodemonstrateaclear PFCresponseatthistemperature (maximumday49).Sincenoexponentialrelationshipbetweentemperatureandpeakdaywasobservedandthemagnitudeoftheresponseremainedconstantoverthewholetemperaturerangewithcarpofthesame age,weexpectthatcarpareabletomountanimmuneresponseattemperatures below 12C.However,inthosecaseslagperiodswillbecomeverylongandthe protectiveeffectofsucharesponseisthereforequestionable. Criteriatoassess immunologicalmemory invertebratesareanincreasedrate ofantibodyproductionandhigherlevelsofantibody (Marchalonis,1977).At24C a truesecondaryresponsewasfound,illustratedbyanearlyappearanceofthe firstPFCanda50xhigherpeakthanintheprimaryresponse.At20C,a10x highersecondaryresponse isreachedonthesamedayasduringtheprimaryresponse. Duringthesecondaryresponseat 18CthefirstPFCappearearlierbutthepeak coincideswiththeprimaryresponse.Itmustbementionedthattheanimalswere g primedwithhighantigendosis (10 SRBC/animal)andthattheintervalbetween primaryandsecondaryinjectionwasabout 1month.Lowerprimingdoseandprolonged interval betweenprimaryandsecondaryinjectionleadtoahighersecondaryresponse (Rijkers,Frederix-Wolters&vanMuiswinkel, 1980b).Whereasthemagnitude oftheprimaryresponseisnotaffectedbylowertemperatures,theanamnestic characterofthesecondaryresponseisgraduallylost.Thismight indicatethatthe formationofmemorycellsisalsoarelativetemperaturesensitiveprocess. 133 Therelationshipbetweentemperatureandpeakdayofthehumoralimmuneresponseincarp (Fig.6)closelymatchedtherelationshipbetweentemperatureand cellularimmuneresponse(allograftsurvivaltime)ingoldfish(Hildemann,1957). Itisconcludedthatinbonyfishhumoralandcellularimmunityareaffectedby temperatureinasimilarway. ACKNOWLEDGEMENTS ThetechnicalassistanceofMr.R.vanOosteromandMr.J.Wijnenandthe biotechnicalsupportofMr.S.H.Leenstraisgratefullyacknowledged.Wethank Mr.W.J.A.ValenfordrawingtheillustrationsandProf.J.F.Jongkindforhis interestandvaluablesuggestionsduringperformanceoftheexperimentsandpreparationofthemanuscript. REFERENCES Ambrosius,H.&Schaker,W. (1964)BeitragezurImmunobiologiepoikilothermer Wirbeltiere I.ImmunologischeUntersuchungenanKarpfen (Cyprinus aavpio L.). Zool.Jb.Physiol.71,73. Anderson,D.P. (1978)Passivehemolytic plaqueassayasameans fordetecting antibodyproducingcells inrainbowtroutimmunizedwiththe('-antigenof enteric redmouthbacteria.Thesis,UniversityofMaryland. Avtalion,R.R. (1969a)Influencedelatempératureambiantesurlaproductiondes anticorps chezlacarpe.Verh.Internat.Verein.Limnol. 17,630. Avtalion,R.R. (1969b)Temperatureeffectonantibodyproductionand immunological memory incarp (Cyprinus carpio) immunized againstbovineserumalbumin (BSA). Immunology, 17,927. Avtalion,R.R.,Malik,Z.,Lefler,E.&Katz,E. (1970)Temperature effecton immuneresistanceoffishtopathogens.Bamidgeh,22,33. Avtalion,R.R.,Wojdani,A.,Malik,Z.,Shahrabani,R. &Duczyminer,M. (1973) Influenceofenvironmental temperatureontheimmuneresponseinfish.Curr. Top.Microbiol.Immunol.61,1. Avtalion,R.R.,Weiss,E.&Moalem,T. (1976)Regulatoryeffectsoftemperature uponimmunity inectothermicvertebrates.In:Comparative Immunology (Ed.by J.J.Marchalonis) 1stednp.227.Blackwell Scientific Publications,Oxford. Avtalion,R.R.,Wishkovsky,A. &Katz,D. (1980)Regulatory effectof temperature onspecific suppressionandenhancementofthehumoralresponseinfish.In: Phylogeny ofImmunological Memory (Ed.byM.J.Manning)p. 113.Elsevier/NorthHollandBiomedicalPress,Amsterdam. Barrow,J.H. (1955)Socialbehaviour infresh-water fishand itseffecton resistance totrypanosomes.Proc.Nat.Acad. Sei.46,676. Borysenko,M. (1970)Transplantation immunity inreptilia.Transpl.Proc.2,299. Brett,J.R. (1976)Scopeformetabolismandgrowthofsockeyesalmon, Onoorhynohus nerka, and somerelated energetics.J.Fish.Res.Board Can.33,307. Brett,J.R. (1979)Environmental factorsandgrowth.In:FishPhysiologyVol.8 (Ed.byW.S.HoarandD.J. Randall) 1stednp.559.AcademicPress,NewYork. 134 Chiller,J.M., Hodgins,H.O.,Chambers,V.C.&Weiser,R.S. (1969)Antibodyresponseinrainbowtrout (Salmo gairdneri) I.Immunocompetent cells inthe spleenandanteriorkidney.J. Immunol. 102,1193. Chiller,J.M., Hodgins,H.O.&Weiser,R.S.(1969)Antibody response inrainbow trout {Salmo gairdneri) II.Studies ofthekinetics ofdevelopment ofantibody producing cellsandoncomplementandonnaturalhemolysin.J. Immunol.102, 1202. Cohen,N. (1966)Tissue transplantation immunity intheadultnewt, Diemictylus viridesoens III.Theeffects ofX-radiation and temperature ontheallograft reaction.J.Exp.Zool. 163,231. Cone,R.E.&Marchalonis,J.J. (1972)Cellularandhumoralaspectsoftheinfluence ofenvironmental temperatureontheimmuneresponseofPoikilothermievertebrates.J. Immunol. 108,952. Cowden,R.R.,Dyer,R.F.,Gebhardt,B,M. &Volpe,E.P. (1968)Amphibianplasma cells.J. Immunol. 100,1293. Cuchens,M.,McLean,E.&Clem,L.W. (1976)Lymphocyteheterogeneity infishand reptiles.In:Phylogeny ofThymus andBoneMarrow-Bursa Cells (Ed.byR.K. WrightandE.L.Cooper) 1stednp.205.Elsevier/North-HollandBiomedical Press,Amsterdam. Cuchens,M.A.&Clem,L.W. (1977)Phylogeny of lymphocyteheterogeneityII. Differential effectsoftemperature onfishT-likeandB-likecells.Cell. Immunol.34,219. Ferren,F.A. (1967)Roleof thespleenintheimmuneresponseofteleostsand eleasmobranchs.J.FloridaMed.Ass.54,434. Harris,J.E. (1973)Theimmuneresponseofdace Leuaisous leuaisous injected antigenicmaterials.J.FishBiol.5,261. (L.)to Hildemann,W.H. (1957)ScaleHomotransplantation ingoldfish (Carassius Ann.N.Y.Acad.Sei.64,775. Huisman,E.A. (1974)Astudyonoptimalrearingconditions forcarp oarpio L.)Thesis,AgriculturalUniversity,Wageningen. auratus) (Cyprinus Marchalonis,J.J. (1977)Immunity inEvolution, 1stedn.EdwardArnold,London. Neale,N.L.&Chavin,W. (1971)Lymphocytic tissuealterations during theprimary immuneresponseofthegoldfish {Carassius auratus L.). Mich.Acad.3,23. Nybelin,0. (1935)ÜberAgglutininbildung beiFischen.Z.Immun.Forsch.84,74. ;0'Neill,J. (1980)Temperature and theprimary and secondary immune responseto MS2bacteriophage in Salmo trutta, Cyprinus oarpio and Notothenia rossii. In: Phylogeny ofImmunological Memory (Ed.byM.J.Manning)p. 123.Elsevier/NorthHollandBiomedicalPress,Amsterdam. Paterson,W.D.&Fryer,J.L. (1974)Effectof temperatureandantigendoseonthe antibodyresponseofjuvenile cohosalmon {Oncorhynchus kisutoh) to Aeromonas salmonioida endotoxin.J.Fish.Res.BoardCan.31,1743. Pliszka,F. (1939)WeitereUntersuchungenüber Immunitätsreaktionen undüber PhagozytosebeiKarpfen.Zbl.Bakt. 1Abt.Orig. 143,451. Pontius,H.&Ambrosius,H. (1972)Beiträge zurImmunobiologie poikilothermer Wirbeltiere IX.Untersuchungen zurzellulärenGrundlagehumoralerImmunreaktionenderKnochenfischeamBeispieldesFlussbarsches {Peroa fluviatilis Actabiol.med.germ.29,319. L.) Ridgway,G.J.,Hodgins,H.O.&Klontz,G.W. (1966)Theimmuneresponse inteleosts. In:PhylogenyofImmunity (Ed.byR.T.Smith,P.A. MiescherandR.A.Good) 1stednp. 199.University ofFloridaPress,Gainesville. 135 Rothe,F. &Ambrosius,H. (1968)Beiträge zurImmunobiologiepoikilothermer WirbeltiereV.DieProliferationAntikörperbildender ZellenbeiSchildkröten. Actabiol.med.germ.21,525. Rijkers,G.T.,Frederix-Wolters,E.M.H. &VanMuiswinkel,W.B. (1980a)Thehaemolytic.plaqueassay incarp (C'yprinus carpio). J.Immunol.Methods 33,79-86. Rijkers,G.T.,Frederix-Wolters,E.M.H. &VanMuiswinkel,W.B. (1980b)Theimmune systemofcyprinid fish.Theeffect ofantigendoseandrouteofadministrationonthedevelopment ofimmunologicalmemory incarp (Cyprinus aarpio). In:Phylogeny ofImmunological Memory (EdbyM.J.Manning)p.93.Elsevier/ North-HollandBiomedicalPress,Amsterdam. Sailendri,K. &Muthukkaruppan,VR. (1975)The immuneresponseof theteleost, Tilapia mossambioa tosoluble and cellular antigens.J.Exp.Zool. 191,371. Smith,A.M.,Potter,M. &Merchant,E.B. (1967)Antibody-forming cellsinthe pronephros oftheteleost Lepomis maoroahivus. J. Immunol.99,876. Tait,N.N. (1969)Theeffectof temperature ontheimmuneresponse incoldblooded vertebrates.Physiol.Zool.42,29. Yu,M.L.,Sarot,D.A.,Filazzola,R.J. &Perlmutter,A. (1970)Effectsof splenectomy ontheimmuneresponseofthebluegourami Triahogastev triahopterus toinfectiouspancreaticnecrosis (IPN)virus.LifeSciences 9,749. 136 APPENDIX I V 137 © 1980 Elsevier/North-HoHand BiomedicalPress Phytogeny of Immunological Memory M.J.Manning,editor THE IMMUNE SYSTEM OF CYPRINID FISH. THE EFFECT OF ANTIGEN DOSE AND ROUTE OF ADMINISTRATION ON THE DEVELOPMENT OF IMMUNOLOGICAL MEMORY IN CARP ( C y p r i n u s c a r p i o ) GERT. RIJKERS, LILY M.H. FREDERIX-WOLTERS and WILLEM B. van MUISWINKEL Department of Experimental Animal Morphology and Cell Biology, Agricultural University, Zodiac, Marijkeweg 40, Wageningen (The Netherlands) INTRODUCTION One of the most characteristic features of the immune system is the phenomenon of immunological memory. Memory means that a second contact with the same antigen evokes an enhanced response. Immunological memory in mammals applies to both cellular and humoral immune responses. Memory in cell-mediated reactions is manifested by the phenomenon that second-set grafts are rejected faster than f i r s t - s e t grafts. Criteria to assess immunological memory in humoral immune responses are an earlier rise in antibody formation, attainment of higher antibody levels and predominance of IgG . Moreover, memory is specific for a given a n t i gen and not a general enhancement of immune competence. Tne capacity to discriminate between "self" and "non-self" is present 2 throughout a l l vertebrates and invertebrates . A cell-mediated immune system is found in annelids, e.g. earthworms which are capable to reject transplanted 3 xeno- and allografts . Upon repeated grafting transplants are rejected faster but this primitive form of memory is not donor specific and only short-lived . I t is not clear whether invertebrates possess a specific humoral immune system 5 since immunoglobulins have not been demonstrated . This does not imply that i n vertebrates are devoid of humoral defence mechanisms since in snails serum factors have been demonstrated which promote recognition and subsequent phagocytosis of foreign material , while in s i l k moths substances with a complement-like a c t i v i t y were found in hemolymph . In the f i r s t vertebrates (jawless and cartilaginous fish) allografts are reQ jected in a chronic way . However, the most advanced bony fish (teleosts) show an acute rejection of f i r s t - s e t allografts and accelerated rejection of secondset grafts ' . When cyprinid fish are kept at 25°C - a normal ambient tempera- ture for the species - cellular immune reactions proceed even faster than in 11 12 mammals ' . At the level of cellular immunity, secondary responses seem to be comparable in teleosts and mammals. As far as humoral immunity is concerned there have been d i f f i c u l t i e s in demonstrating clear-cut secondary responses in 139 in lower vertebrates 13-15 . In goldfish the magnitude of the secondary response was not enhanced but differences in the kinetics of antibody production were taken as evidence for immunological memory . In other studies secondary responses were obtained which met the usual c r i t e r i a for immunological memory 19 . Since teleost fish possess only one IgM l i k e class of immunoglobulins 20-21 , the criterium of predominance of IgG antibodies during the secondary response is not valid for this group. In mice the apparent paradox exists that priming with a low antigen dose which evokes no or only a low primary response, is optimal for memory development. Priming with a high antigen dose, which results in a clear primary re22 23 sponse, gives a poor secondary response ' . I t has been shown that antibody produced during the primary immunization, acts through a feedback mechanism that limits the magnitude of the secondary response to subsequent antigenic challenge, 24 25 both in vivo and in vitro ' In this paper duration and specificity of immunological memory in carp, a teleost f i s h , is compared with the same process in mammals. The effect of d i f f e r ent routes of administration and antigen dosages on the development of immunological memory is studied. MATERIALS AND METHODS Animals. Common carp (Cyprinus aarpio) were obtained from the Organization for Improvement of Inland Fisheries (Nieuwegein) or bred in our laboratory. They were kept in aquaria with running tap water at 18°C and fed daily with dry food (K 30, Trouw & Co, Putten) with a "Scharflinger" automatic feeder. Animals, weighing 200-600 g, were 1year old at s t a r t of the experiments. Antigens. Sheep red blood cells (SRBC) were obtained from the Department of Animal Husbandry, Agricultural University (Wageningen). Horse red blood cells (HRBC) were purchased from the National Institute of Public Health (Bilthoven). Cells were washed 3 times with phosphate buffered saline (PBS) pH 7.2 before use. Immunization. Animals were injected with SRBC either intramuscular (i.m.) or •"~""^ 5 7 9 intravenous ( i . V . ) . A priming dose of 10 , 10 or 10 SRBC was i.m. injected in the dorsal region (0.05 ml) or i . v . in the caudal vein (0.5 ml). Control animals were i.m. injected with 0.05 ml PBS. At 1, 3, 6 or 10 months after primary i n Q j e c t i o n , 5 animals out of each group were i.m. injected with 10 SRBC. Fourteen days after the challenge the animals were k i l l e d and the number of antibody producing cells in different lymphoid organs was determined. Plaque forming cell assay. The number of antibody producing cells in spleen, pronephros and mesonephros was determined using the haemolytic plaque assay 2fi adapted for carp . Bream (Abramis brama) serum was used as complement source. 140 After incubation for 2 hours at 25°C the plaque forming cells (PFC) were scored under a low-power dissection microscope. The number of viable cells in cell suspensions was counted in a haemocytometer using a dye exclusion assay (0.2% Trypan Blue in PBS). Results are expressed as number of plaque forming cells per 106 viable white cells (PFC/106 WC). RESULTS Primary response against SRBC The results with carp injected with different dosages of SRBC are shown in Fig. 1. The number of PFC in spleen, pronephros and mesonephros was determined 17 days after injection (peak of the response). Similar experiments with nonimmune carp showed no background PFC. Animals injected i . v . or i.m. with 10 5 SRBC poorly responded (0.2-2 PFC/106 WC). With increasing SRBC dose a marked i n 7 9 crease in PFC response was observed. Animals i.v. injected with 10 and 10 SRBC gave rise to higher PFC levels compared with i.m. injected animals, although d i f ferences were only significant for spleen at the highest antigen dose. Thus, after a primary injection the magnitude of the peak response at day 17 is correlated with the antigen dose. o 9 When animals kept at 18 Care i.m. injected with 10 SRBC with an interval of 1 month between 2 injections, the same peak value is reached on the same day (day 17, Table 1.). However, in the secondary response the f i r s t PFC appear 3 days e a r l i e r than in the primary response resulting in a ten-fold difference on day 14. In order to allow an assessment of immunological memory a l l PFC assays in U103- %: S 10t 8 7 8 Log,0SRBCdOM ig. 1. Dose-dependency oftheprimary anti-SRBCresponseincarp.Animals, *(,« *» t»v/ö*. u t . | / i . i i u b i i \ . j i w i L u c j'l i.tuaLy a i m . UIUJV i c s | / u u o c J.II t a L J I . t\ll tedwith ;eptat 18°C,were intramuscular (0,A,0)orintravenous (O^,!)inject rosandme0 5 , 10'or I09 SRBC.Onday 17thenumberofPFC inspleen,pronephro :onephroswasdetermined.Eachpointrepresents thearitmeticmean+ 1S.E.(n«4) 141 TABLE1 IMMUNE RESPONSEOFCARP AGAINST SRBC PFC/10 white pronephros cells day 14 day17 day20 Typeofresponse primary secondary 22+ 12 379+185 230+75 304+101 24+13 128+16 Animals,keptat 18°Cwere injected 2times#with 10 SRBC (i.m.).Thesecondinjectionwasgiven 1monthafterthefirst. Arithmeticmean+ 1S.E. (n=4). ted withtheantigen dose. g When animals keptat18°Cwerei.m.injected with 10 SRBC withanintervalof 1month,thesame peak valueisreachedonday17(Table 1).However,inthesecondary responsethefirstPFCappear3days earlier thanintheprimary response resultinginaten-fold differenceonday14.In ordertoallowanassessmentof immunological memoryallPFCassaysinthefollowing experiments were performed 14days afterthelast injection. 101 intramuscular intravenous K^ ioi 10- 10 interval between first andsecond injection (months) Fig.2 . Developmentof immunological memory incarp spleen.Animalswere with1 0 5 (0,#), 107 (A,A)or 109SRBC (DM) either intramuscularorintra' At 1,3,6or 10monthsafterpriming 5animalsoutofeachgroupwerechallengedwith 109SRBC (i.m.).Thenumber ofPFC inspleenwasdetermined 14daysafter challenge.Eachpoint represents thearithmeticmean+ 1S.E.. 142 primed intravenous. intramuscutw intravsnous O 101 10?. I 10 1 intervalbetweenfirst andsecondinjection(months) Fig.3. Development of immunological memory incarppronephros.For furtherexplanationseeFig.2. Developmentofimmunological memory Inordertostudytheeffectofdifferent dosagesandroutesof antigen administrationontheformationofimmunological memory, animals were divided into7 groups.Three experimental groupswere injected i.v.and3other groupsi.m.. 5 7 9 Different dosages SRBC (10,10 and10)were injected along each route.Agroup ofPBSinjected animals servedascontrol. g Five animalsoutofeach group receivedani.m.injection with10 SRBC1 month after primary injectionandwere testedforPFC14days later.Controlanimals developed only3+1,24+15and6 + 3PFC/10 WCinspleen, pronephros and mesonephros respectively.Theresponseof10 SRBCi.m.primed animalsdid g not exceed these values significantly (Figs.2-4).The10 SRBCi.m.group gave a clear secondary response (e.g.254+75PFC/10 WCinpronephros)butthe highestPFClevelswere obtained with animals primed with only10 SRBCi.m. (664+350PFC/10 WCinpronephros; Figs.2-4).Inalli.v.primed groupsasecondary responsewasobserved. After priming along this routePFClevelswere higherwith increasing priming dosages. Challengeat3months after priming producedthefollowing picture.Control animals developed 17+12,49+12and29+17PFC/10 WCinspleen, pronephros — — — 5 and mesonephros respectively. Interestingly,theresponseof10 SRBCi.m.primed animals showedforthefirst timeaclear secondary characterandwascomparable withtheresponseofthe10 SRBCi.m.primed group (227+99and171+80 143 lOi, g 10» 10- 10 intervalbetweenfirstandsecondinjection(months) Fig.4. Development of immunological memory incarpmesonephros.For further explanationseeFig.2. PFC/10 WCinpronephros respectively).Theresponseofthe10 SRBCi.m.group remainedataquite high level (899+106PFC/10 WCinpronephros).Inthei.v. primed animalsPFClevels slightly declined compared withthesituation2months earlier.Theresponseofthe10 SRBC i.v. groupwas comparable with control values. Another3months laterthewhole procedurewas repeated. Incontrol animals 4 + 2 , 17+4and8+2PFC/10 WCwere observed in spleen,pronephrosandmesonephros respectively. Amazingly theresponseofthe10 SRBCi.m.groupwasstill increasingandbecameequaltothehighPFClevelof10 SRBC i.m. primed animals (784+218and829+139PFC/106WCinpronephros).Inthe10 9SRBCi.m. andalli.v.groupsPFClevels remained nearly constant. Inaddition,theanimalswhich were primed i.m. receivedabooster 10months after priming.PFClevelswere similartothesituationat6months after priming, indicatingalong-lived memory. Highest secondary responseswere achieved 5 with 10 and 10 7SRBC i.m. primed animals (1094and828+158PFC/10 6WCin proq — nephros).Animals primedwith 10 SRBCi.m.remainedatalevelofabout100 PFC/10 WCinpronephros. Ingeneral thedevelopmentofimmunological memoryinspleen (Fig.2) and mesonephros (Fig.4)runsparallel withthepicture described forpronephros (Fig.3). 144 Specificityofthe humoral immune response Inordertotest the specificityofthe immune response and memory formation SRBC primed and control animalswere injected with HRBC.Itappeared that only PFC directed against the booster antigen were present (Table 2.). The immune response against SRBC and HRBC turned outtobehighly specific andnocrossreactivity between SRBC and HRBCwas observed inthis system. The magnitudeof the anti-HRBC responsein10 SRBC i.v. primed animals was not enhanced compared with the responseofcontrol animals which were injected with PBS.Itis concluded that the developed memory cellswere specific for the priming antigen. No indications forageneral enhancementofimmune competence were found. TABLE2 SPECIFICITYOFTHE HUMORAL IMMUNE RESPONSE INCARP First injection Second injection Test antigen spleen PBSi.m. 10 9HRBC i.m. HRBC 6.4 + 2.4* 16.0+8.1 SRBC 10 7 SRBC i.v. 10 9SRBC i.m. HRBC HRBC 0.2+0.2 0.1+0.1 SRBC 10 9 SRBC i.v. 109 HRBC i.m. PFC/106WC pronephros 7.3+2.8 SRBC 0.3+0.1 0 32.0+10.5 13.7+7.6 0.4+0.3 4.5+0.9 1.1+0.7 0.9+0.3 9.8+5.2 mesonephros 15.0+5.1 5.0+1.5 0.8+0.6 0.1+0.1 Carp,whichwerekeptat 18°C,were intravenous (i.v.)injectedwith 10 or10 SRBCorintramuscular (i.m.)with0.05mlPBS.Tenmonths laterallanimalsreceived ani.m. injectionwith 109 SRBCorHRBC.Thenumber ofPFC inspleen, pronephrosandmesonephroswasdetermined 14daysafter thelast injection. "Arithmeticmean+ 1S.E. (n=3). 9 7 DISCUSSION Our resultswith carp show that the priming routeisimportant for the magnitudeofthe secondary response. Moreover, differencesinantigen priming dosesecondary response relationship were observed. When carpwere primed i.v. the magnitudeofthe primary and secondary response increased with increasing antigen g doses.After i.m. priming withahigh antigen dose (10 SRBC)ahigh primary but a poor secondary response was observed. Primingwith10 SRBCwas optimalfor 5 memory formation.Alow priming dose (10 SRBC)resultedinalow primary butin 145 a high secondary response when the booster injection was given at least 6 months later. Itappeared that the priming dose-secondary response relationship in carp 27 28 after i.m. priming is similar tomammals after i.v. priming ' .It is tempting to speculate that antibody feedback inhibition is responsible for this phenomenon. Ithas been shown in rodents that IgM ismore susceptible to suppression 29 than IgG .Yet,antibody feedback cannot fully explain the observed differences inmemory development after priming with different antigen doses. E.g. the secondary response of 10 SRBC i.m. primed animals should increase when the interval between primary and secondary injection is prolonged. A second phenomenon which might play a role is antigen persistence. Since the primary response after low dose priming is very meager, antigen is not eliminated by antibody induced lysis or phagocytosis.Antigen(fragments)may persist and stimulate the formation of 5 memory cells.This might be the reason why it took so long for the 10 SRBC i.m. primed animals to develop a high secondary response. In trout, the primary immune response against MS2bacteriophage increased with higherantigen dose.The same dose dependency was found after a secondary 19 stimulation .Incarp, immunized with bovine serum albumin (BSA)ranging from 0.1-5 mg/kg,no significant differences in titres during the primary response 30 were obtained .High BSA doses were found to be tolerogenic in primary and secondary response.At low temperatures (14°C)low BSA doses (0.04-0.2 mg/kg) 30 turned out to be tolerogenic too .In the teleost Tilapia mossambioa the primary PFC response to SRBC was found to be proportional to the amount of antigen 31 19 30 injected .Inall studies the antigen was administered intraperitoneal ' or 31 i.v. .This might explain the observed antigen dose-secondary response relationship,especially since i.v. priming in our experiments resulted in the same relationship. The controversial data on secondary responses in lower vertebrates is centered around at least 2factors: the antigen used and the period between first and second contactwith the antigen. In this respect it is stated that characteristic secondary responses can only beobtained with antigens which induce a true 32 primary response .The second factor is the period between first and second antigen contact. This is visualized by our finding that no anamnestic response 5 was observed in animals primed with 10 SRBC i.m. when a booster injection was given 1month later. However, asecond injection 6 months after the low dose priming resulted ina clear secondary response. It is evident that temperature is important too for primary and secondary responses inectothermic vertebrates 30 . Results of studies in our laboratory concerning the effect of temperature on the immune response in carp at 12-24°C will be presented elsewhere. 146 The presented results might have practical consequences in the field of prophylaxis of diseases, especially vaccination schedules. However, it must be kept in mind thatwe used SRBC which is a corpuscular, non-pathogenic antigen. The immune system will probably respond in another way to proliferating pathogens. g The most striking observation was that a high priming dose (10 SRBC)was not optimal for memory formation; in other words: high dose vaccination does not always result in optimal protection. Priming with a 100 x lower antigen dose resulted ina 10 xhigher secondary response; the developed memory remained at 5 this high level for at least 10months.A low priming dose (10 SRBC)can lead to a high secondary response when the second injection is given at least 6 months after priming. When dealing with expensive vaccins it isworthwhile to consider that low priming doses can be used if not an immediate protection is required. If similar results can be achieved when a vaccin is administered by routes applicable in mass fish culture (e.g. oral immunization or hyperosmotic infiltration) is still an open question. ACKNOWLEDGEMENTS We are grateful to Mr. R. van Oosterom and Mr.J. Wijnen for technical assistance, toMr. S.H. Leenstra for biotechnical support and to Mr. W.J.A.Valen for drawing the figures.Furthermore we acknowledge Prof.J.F. Jongkind for his stimulating interest and valuable suggestions during the performance of the experiments and the preparation of the manuscript. REFERENCES 1. Nossal, G.J.V.,Austin, C M . and Ada, G.L. (1965) Immunology, 9, 333-348 2. Cooper, E.L. (1976)Comparative Immunology, Prentice-Hall, Englewood Cliffs, 337 pp. 3. Cooper, E.L. (1976) in:Comparative Immunology (J.J. Marchalonis, Ed.) Blackwell Scientific Publ., Oxford, 36-79. 4. Hostetter, R.K. and Cooper, E.L., (1974)Contemp. Topics in Immunobiol., 4, 91-109. 5. Jenkin, C R . , (1976) in:Comparative Immunology (J.J. Marchalonis, Ed.) Blackwell Scientific Publ.,Oxford, 80-97. 6. Sminia,T., Knaap, W.P.W, van der and Edelenbosch, P. (1979) Dev. Comp. Immunol., 3, 37-44. 7. Rasmuson,T. and Boman, H.G. (1977) in:Developmental Immunobiology (J.B. Solomon and J.D. Horton, Eds.) Elsevier/North Holland, Amsterdam, 83-90. 8. Hildemann, W.H. (1970)Transpl. P r o c , 2,253-259. 9. Hildemann, W.H.and Haas,R. (1960)J. Cell.Comp. Physiol., 55,227-233. 10. Rijkers, G.T.and Muiswinkel, W.B.van (1977) in:Developmental Immunobiol- 147 ogy (J.B. Solonon and J.O. Horton, Eds.) Elsevier/North Holland, Amsterdam, 233-240. 11. Goedbloed, J . F . and Vos, 0. (1965) Transplantation, 3, 368-379. 12. Tam, M.R., Reddy, A . L . , Karp, R.D. and Hildemann, W.H. (1976) i n : Comparative Immunology ( J . J . Marchalonis, Ed.) Blackwell S c i e n t i f i c P u b l . , Oxford, 98-119. 13. Rothe, F. and Ambrosius, H (1968) Acta B i o l . Med. Germ., 2 1 , 525-536. 14. Luk'yanenko, V . l . (1966) Dokl. B i o l . S e i . , 170, 677-678. 15. Ingram, G.A. and Alexander, J.B. (1976) Acta B i o l . Med. Germ., 35, 1561-1570. 16. Trump, G.N. and Hildemann, W.H. (1970) Immunology, 19, 621-627. 17. S a i l e n d r i , K. and Muthukkaruppan, VR. (1975) J . Exp. Z o o l . , 1 9 1 , 371-382. 18. Avtalion, R.R. (1969) Immunology, 17, 927-931. 19. O ' N e i l l , J.G. (1979) J . Fish B i o l . , 15, 237-248. 20. Corbel, M.J. (1975) J . Fish B i o l . , 2 , 539-563. 21. Richter, R., Frenzel, E.M., Hà'dge, D., Kopperschläger,G. and Ambrosius, H. (1973) Acta B i o l . Med. Germ., 30, 735-749. 22. Grantham, W.G. (1972) J . Immunol., 108, 562-565. 23. Benner, R., Meima, F . , Meulen, G.M. van der and Ewijk, W. van (1974) Immunology, 27, 747-760. 24. Grantham, W.G. and F i t c h , F.W. (1975) J . Immunol., 114, 394-398. 25. Möller, G. and Wigzell, H. (1965) J . exp. Med., 121, 969-989. 26. R i j k e r s , G . T . , Frederix-Wolters, E.M.H, and Muiswinkel, W.B. van (1980) J . Immunol. Meth. ( i n press). 27. Hanna, M.G. and Peters, L.C. (1971) Immunology, 20, 707-718. 28. Sercarz, E.E. and Byers, V.S. (1967) J . Immunol., 98, 836-843. 29. Uhr, J.W. and Möller, G. (1968) Adv. Immunol., 8 , 81-127. 30. Avtalion, R.R., Wojdani,A., Malik, Z., Shahrabani, R. and Oucziminer,M. (1973)Curr. Topicsin Microbiol, and Immunol., 61, 1-35. 31. Jayaraman,S.,Mohan, R. and Muthukkaruppan, VR. (1979) Dev. Comp. Immunol., 3,67-75. 32. Ambrosius, H. (1976)in:Comparative Immunology (J.J. Marchalonis, Ed.) Blackwell Scientific Publ.,Oxford, 298-334. 148 APPENDIX V 149 Aquaculture, 19 (1980) 1 7 7 - 1 8 9 © Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands THE IMMUNE SYSTEM OF CYPRINID FISH. THE IMMUNOSUPPRESSIVE EFFECT OF THE ANTIBIOTIC OXYTETRACYCLINE IN CARP (CYPRINUS CARPIO L.) G.T. RIJKERS, A.G. TEUNISSEN, R. VAN OOSTEROM and W.B. VAN MUISWINKEL Department of Experimental Animal Morphology and Cell Biology, Agricultural Zodiac, Marijkeweg 40, 6709 PG Wageningen (The Netherlands) University, (Accepted 28 August 1979) ABSTRACT Rijkers, G.T., Teunissen, A.G., Van Oosterom, R. and Van Muiswinkel, W.B., 1980. The immune system of cyprinid fish. The immunosuppressive effect of the antibiotic Oxytetracycline in carp (Cyprinus carpio L.). Aquaculture, 19: 177—189. The effect of Oxytetracycline (oxyTC) upon the immune system of carp was investigated. OxyTC was administered by feeding with oxyTC-containing pellets or by intraperitoneal injection. In order to study cellular immunity, allogeneic scale transplantation was carried out. Oral administration of oxyTC had no influence upon the median survival time (MST) of the scales. However, injections with oxyTC significantly prolonged the MST from 8.5 to 11—20 days. Thus, cellular immunity was not affected by oral administration of oxyTC, but injections did have a dramatic immunosuppressive effect. To investigate the effect of oxyTC upon humoral immunity, animals were injected with rabbit red blood cells (RaRBC). During the primary and secondary response the number of rosette forming cells (RFC) in the spleen was determined. Control animals (not treated with oxyTC) developed an anti-RaRBC response up to 2 5 0 0 0 RFC/10 6 white spleen cells but oxyTC-treated animals always showed reduced RFC numbers. In some cases the RFC number in oxyTC-treated animals was comparable with background levels in nonimmunized control animals (4000 RFC/10 6 white spleen cells). Thus, irrespective of the route of administration, the humoral immune response is depressed by oxyTC. It is concluded that both humoral and cellular immune responses of carp are suppressed during treatment with oxyTC. Preliminary observations showed an increased number of granulocytes in the spleen of oxyTC-treated animals. It is tempting to speculate that in those cases where specific lymphoid defence mechanisms are blocked, the phagocytic defence system becomes more active. INTRODUCTION There are several ways for a diseased animal to eliminate pathogenic microorganisms. Under normal circumstances the pathogen is attacked either by phagocytic cells (granulocytes, mononuclear phagocytes) or in a more specific way by lymphoid cells (humoral and cell-mediated immunity). 151 In addition, antibiotics and chemotherapeutics can be used for the prevent] and control of diseases (Braude et al., 1953;Guest, 1976). At present, penicillins, tetracyclines, macrolides, aminoglycosides, chloramphenicol, methylenblue, nitrofurans and antifungals are employed (Sanford, 1976). It is known that antibiotics and chemotherapeutics can evoke acute toxic effects in animals (Martin, 1973) and increase the risk of raising resistant pathogens (Swann, 1969; Finland, 1975). Moreover, some antibiotics can interfere with certain steps in eukaryotic protein synthesis (Watson, 1975). Most probably the mitochondrial protein synthesis is inhibited (De Vries and Kroon, 1970). Numerous studies in mammals and birds have been performed on the interaction between antibiotics and the immune system, with contradictory results A stimulatory effect of antibiotics upon the immune response is reported by Popovic et al. (1973). Their results show that pigs treated with Oxytetracycline (oxyTC) produce significantly higher agglutinin titers after injection with a brucella vaccine than non-treated controls. According to other reports antibiotics have no effect upon the immune response. In birds, feeding with oxyTC did not interfere with antibody production after bovine serum albumin (BSA) injection (Glick, 1968). Several studies deal with immune suppression after treatment with antibiotics. In pigs, oxyTC depressed the formation of immunity against experimental Erysipelothrix infection (Fortushnyi et al., 1973). In mice injections with oxyTC depressed the antisheep erythrocyte response (Nikolaev and Nazarmukhamedova, 1974). Feeding of oxyTC to rats and mice interfered with the antibody production against Salmonella enteritidis (Slanetz, 1953). Antibiotics are in common use for the prevention (Schaperclaus, 1967; Bauer et al., 1969) or control of diseases in cultured fish (Schaperclaus, 1969; Ghittino, 1972; Van Duijn, 1973). In order to prevent the development of drug resistant bacteria the amounts of antibiotics used are generally high (Van Duijn, 1973;Roberts and Shepherd, 1974). In contrast to the data mentioned above, virtually nothing is known about the effects upon fish. Kreutzmann (1977) demonstrated that erythropoiesis in the eel was disturbed after treatment with chloramphenicol or oxyTC. Reports dealing with the immune system describe effects on cellular immunit; Antibiotics and antimetabolites can delay allograft rejection in fish (Hildemann and Cooper, 1963; Levy, 1963; Cooper, 1976). At present no data concerning the effects of antibiotics upon humoral immunity in fish are available. This study was performed in order to obtain information about the possible side effects of antibiotics upon the immune system of fish. We have chosen oxyTC because of its frequent use in fish culture (Herman, 1969). MATERIALS AND METHODS Animals Carp (Cyprinus carpio, Linnaeus 1758) were obtained from the Organization for Improvement of Inland Fisheries (OVB) at Nieuwegein, The Netherlands. They were kept in aquaria with running tap water at a temperature of 20 ± 1°C. Animals were fed with pelleted dry food (Trouvit K30, Trouw &Co, Putten, The Netherlands). The daily amount of food (2.5%of their body weight) was supplied by means of a "Scharflinger" automatic feeder. At the start of the experiment two size classes were selected from a group of 800 sarps, aged 6 months: (1) small animals with a total length between 11 and 13 cm ( 1 5 - 4 9 g); (2) large animals between 15 and 17 cm (62—105 g). Antibiotic Oxytetracycline (oxyTC) was administered either by intraperitoneal (i.p.) injection of a solution of 50 mg/ml Engemycine® (Mycofarm, De Bilt, The Netherlands) or orally by feeding fish with Trouvit-pellets supplemented with 2000 ppm oxyTC. Scale transplantation It is known that repeated MS-222 anaesthesia causes a considerable loss Dfanimals in this species (Rijkers and Van Muiswinkel, 1977). Therefore arps were not anaesthetized during scale transplantation and subsequent iaily inspection. Five scales in the row above the lateral line were removed with a pair of fine forceps and kept for 5 min at maximum in sterile phosahate buffered saline (PBS). Each fish received four allografts, taken from wo donors, and one autograft as a control. After transplantation allogeneic jcales became overgrown by hyperplastic host tissue, which resulted in a white appearance. At the same time some scales exhibited vasodilatation and jranching melanophores. The beginning of the clearance of the hyperplastic lost tissue is considered to be the survival end point (SEP) of the graft Hildemann, 1957). The median survival time (MST) was calculated from he SEP's. r mmunization Rabbit red blood cells (RaRBC) were obtained from the Foundation of îlood Group Studies, Wageningen, The Netherlands. The cells were washed hree times with PBS before use. Each animal received 10 9 RaRBC, injected ntramuscularly (i.m.) in the dorsal region. In some cases a second injection was given 24 days later. 153 Rosette test Cell suspensions were prepared as described earlier (Rijkers and Van Muiswinkel, 1977). The number of rosette forming cells (RFC) in the spleen was determined according to a slight modification of the method of Zaalberg (1964) and Biozzi et al. (1966). Briefly, 4 X 10 6 white spleen cells and 24 X 10 6 RaRBC were mixed and adjusted to a volume of 1 ml. The medium used was Hank's Balanced Salt Solution (HBSS, Difco, Detroit, U.S.A.) supplemented with 0.4% New Born Calf Serum and 1%antibiotics (20 I.U. mycostatine, 100 I.U. penicillin and 0.1 mg streptomycin per ml). The cell suspension was incubated overnight at 4°C and subsequently rotated for 10 min (10 rpm) at room temperature (Multi Purpose Rotator, Wilten, EttenLeur, The Netherlands). Rosettes were counted under a phase-contrast microscope (objective 20 X ). Two types of rosettes were distinguished: (1) rosettes with a single layer of RaRBC, probably cells with receptors for RaRBC on their surface; (2) rosettes with a multiple layer of RaRBC representing cells which secrete antibodies against RaRBC. Blood sampling and testing Blood samples were collected by caudal puncture (Steucke and Schoettger, 1967). The hematocrit value was determined using a standard technique for fish (Amlacher, 1976). Sera were stored at —20°C. Serum levels of oxyTC were determined by the agar well diffusion method using Bacillus cereus (ATCC 11778) as assay organism (Bennett et al., 1966). A calibration curve was prepared using oxyTC dissolved in normal carp serum. The bacteria were a gift from the National Institute of Public Health (Bilthoven, The Netherlands Experimental set-up Animals were divided into five groups, which were kept in equal sized aquaria. Control animals received no treatment (group I, n = 28). Others received intraperitoneal (i.p.) injections of phosphate buffered saline (PBS) every 3 days (group II). Group III was fed with pellets containing 2000 ppm oxyTC. Groups IV and V received oxyTC by i.p. injection every 3 days (dosagi in Table I). Groups II—V consisted of 50 animals each. In scale transplantation experiments each group consisted of six fish (three large and three small). In rosette tests, six (primary response) or four (secondary response) animals were used for each determination. Student's f-test was used to test the significance of differences between groups. 154 RESULTS Growth effects No difference in growth rate was observed between non-treated and PBSinjected animals (Table I, groups I and II). Feeding with oxyTC-containing pellets had a significant growth promoting effect (P < 0.005; group III). However, injections with oxyTC diminished growth ( P < 0.005; groups IV and V). The growth inhibition was more pronounced with higher oxyTC doses. Differences between the two weight-classes became smaller during the experiment, because small animals grew faster than large ones in all experimental groups, except group I. TABLE I Oxytetracycline (oxyTC) treatment and growth in carp Experimental group Size class Weight at start of the experiment (g) Weight after treatment for one month (g) Percentile increase in weight None None Small Large 39 ± 2* 75 ± 2 50 ± 4 101 ± 4 28 35 II: PBS-injection 0.15 ml PBS/animal 0.40 ml PBS/animal Small Large 30 ± 2 77 ± 1 41 ± 2 96 ± 4 37 25 III: OxyTC-feeding Pellets supplemented with 2000 ppm oxyTC Small Large 35± 1 77 ± 2 54 ± 2 112 ± 3 55 45 IV: OxyTC-injection 60 mg oxyTC/kg fish low dose 60 mg oxyTC/kg fish Small Large 31 ± 1 77 ± 2 39 ± 2 89 ± 3 25 15 V: OxyTC-injection 180 mg oxyTC/kg fish high dose 180 mg oxyTC/kg fish Small Large 35± 2 84 ± 2 42 ± 2 94 ± 3 20 12 I: Control Treatment All experimental groups (28—50 animals/group) were fed daily with pellets weighing 2.5% of their initial body weight. Control animals received no treatment (group I). Group II received an intraperitoneal (i.p.) injection of phosphate buttered saline (PBS) every 3 days. The other groups received the antibiotic daily by feeding with oxyTC-supplemented pellets (group III) or by i.p. injection every 3 days (Groups IV and V). Weighing of the animals was performed at the start of the experiment and 1 month later. •Arithmetic mean ( ± 1 standard error). After 48 days of feeding with antibiotics, animals in group III showed for the first time demonstrable levels of oxyTC in their serum; the maximum concentration observed was 1.25 ng oxyTC/ml. Injections with oxyTC gave rise to an earlier appearance of higher antibiotic levels in serum. After 16 days of treatment animals of group IV had 5ng oxyTC/ml and group V 10—15 Hg oxyTC/ml serum. In general oxyTC levels were influenced by the time between the last oxyTC injection and blood sampling. 155 eu ft lO TH +1 m H N' Iß T H O +1 +1 n H +l +l co H iß CO O iß CN +l +1 +1 aocN "* 2 cd O5 ft •- cd OJ 09 Cd K. 0) OJ •"*ï -4-1 Iß CM cd T3 O C N O T (-< !s S E Iß H +1 +1 +1 +1 +1 CO -^Tj" 1-HCN TH I H +1 +1 cd cu U ce u S OS O u cu I-I +1 <ß rf iß CJ - — CU i—I iß fi g CU .— CO ^ • ^• -fi +3 cu CU J3 [ft o >> B IN o a o^ co +1 iß m Ó +1 o od iH +1 iß Tji Iß O iß r-t +1 iß iß' o ?, •» W m cd •o o c o cd >> cd •O o X o CU cu u os c cm S ci rH +i +i o 's d ft S .S >> ^ ^ -M Iß •a fi iß O •*" >> cd * CU •OB g 3 to •o o s O a CO TH iH O +1 +1 +! *• "^i-i r-l >o -<t od Iß Iß iß d d d »H SS CN i - i fi fi O « ï fl •£ Cfi J 3 cd cd ^ >H ( J u I 1 Iß Iß | H CO iß iß 1-H CO Iß Iß iH CO _0 C a .2 Cd ij o> -w cu C eu M ^ 158 • E ft ä cu o <*-i 'fi" Ó iß iß r-l CO fi o tili B 3 O C eu cd —i '-ft C 3 u CU . S CU o CU 's » 'V CO fi co H H -a o O O « >>•£ x 2f> OIS H >IC > O M PH M t» X •O iH CU <w •" O a S. ß .2 '+J -O 0 CJ CU » u 3 0 «4H G 'S P O «• S1 cu co .S cu co •M -U . 3 CU >1 T3 cu cu > _S CU •g 3 fl OS S« § « • B i ) : >> cd .. fi Cfl CU C "O -Q +i +i iß iß "3 Q u -G fi CU «*H v ±> • " 'S fi ö cu fi ° -ü '3 •" cd 1 "-o cd d fi o o M 0 « £ tó ft cd CU u cd . tó tó iu 0 >> cd "—•' -w iß cd o6 cd S MI CA 2 cu cd Ä « g0 S t i -»J "ft J3 ^ CJ '.£ ft tö ~*I S o " -s eu s o h iß ft T3 -B Iß Iß' io Ó CN +1 +1 iß r-i 05 CN o o d +i co Cd V CJ - M • eu B S SS CU c >, £ 5 *" ^ cd "o rt *e2 CU cu hi CU ^ S'S . «•BS 'S-'Sg S 'S"-« 3s IS t l CU o cu cu -J3 B II J2"H c . cu ^ "3) fi S « 'to co II "O öo B « * * * TABLE III Differential blood cell counts in Oxytetracycline (oxyTC)-treated carp Experimental group I: Control V: OxyTC-injection** high dose Number of cells (X 10 7 ) per ml* Erythrocytes Lymphocytes + monocytes 135 ± 2 110 ± 1 Granulocytes Thrombocytes 4.6 ± 0.3 0.58 ± 0.20 0.32 ± 0.02 3.0 ± 0.3 0.66 ± 0.06 0.30 ± 0.03 * Arithmetic mean (± 1 standard error) of five animals. ** Cell counts were performed 37 days after start of oxyTC treatment. TABLE IV Granulocytes in the spleen of carps treated with Oxytetracycline (oxyTC) Experimental group Percentage granulocytes of splenic white cells 9 Days after 7 Days after primary injection secondary injection 13 Days after secondary injection I: Control n.d.* 7.0 ± 0.6 4.2 ± 0.6 II: PBS-injection n.d. 4.5 ± 0.3 6.9 ± 2.5 III: OxyTC-feeding n.d. 5.9+ 1.0 5.0 ± 0.7 IV: OxyTC-injection low dose 13.4 ± 1.0 19.0 ± 2.7 15.5 ± 1.7 V: 21.7 ± 2.1 32.6 ±'12.2 n.d. OxyTC-injection high dose Animals were injected with 1 0 ' rabbit red blood cells (RaRBC) intramuscularly (i.m.) at 35 days after start of PBS injection or oxyTC treatment. A secondary injection ( 1 0 ' RaRBC, i.m.) was given 24 days later. Cells were counted in a hemocytometer under a phase-contrast microscope (objective 20 X ). Each point represents the arithmetic mean (±1 standard error) of six (primary response) or four (secondary response) animals. * n.d. = not done. splenic leucocytes were granulocytes. However, the low dose oxyTC-injection group (IV) had 10—20%and the high dose oxyTC-injection group (V) showed even higher numbers of granulocytes (20—30%). | DISCUSSION | The effect on the immune status of animals israrely taken into consideration when chosing an antibiotic for therapeutic use. Yet, adverse sideeffects are 159 unwanted because the immune system has to co-operate with the antibiotic. The antibiotic generally inhibits growth of the pathogen allowing the immune system to eliminate the invaded micro-organisms. The data about the effects of antibiotics upon the immune system are rather confusing. Many reports are known describing positive, negative or no effects on the immune system. However, this picture is based on effects of different antibiotics studied in different animal species. Moreover, the parameters used (e.g. susceptibility to diseases) reveal overall effects on the wellbeing of an animal, which is not exclusively dependant on the immune status. No studies are available concerning the effects of antibiotics upon basic immunological processes such as antigen recognition and antibody productior Besides being used for prevention and control of diseases, antibiotics are used in animal husbandry because of their growth promoting effect. Growth of freshwater fish such as Labeo and carp is promoted by supplementing fooc with oxyTC (Mitra and Ghosh, 1967; Sukhoverkhov, 1967). In our experiments with carp the same growth promoting effect was found after feeding with oxyTC-containing pellets. This growth promotion might be caused by changes in the intestinal flora or gut epithelium allowing a more efficient food uptake. In order to study humoral immunity, animals were injected with RaRBC instead of the usual sheep red blood cells (SRBC). SRBC and carp lymphocytes look quite alike under the phase-contrast microscope. Therefore RaRBC which are smaller than SRBC, were used, allowing easy detection of the centr lymphoid cell in a rosette. No data are available about the kinetics of antigen recognizing and antibody producing cells after injection of this antigen in cyprinid fish. The time schedule for the rosette test was based upon the work of Warr et al. (1977), who showed that maximum numbers of splenic RFC appeared at day 8 after injection of goldfish with horse erythrocytes. In the scale transplantation experiments we observed no effect of orally administered oxyTC, but injections of oxyTC delayed allograft rejection. This observation is in agreement with that of Hildemann and Cooper (1963) who found that in the teleost Fundulus heteroclitus, injections with tetracycline prolonged survival times of allografts. Antibiotics have an influence not only on the peak height of the humoral immune response but also on the kinetics of the cells involved. For instance, the peak day of antibody producing cells after immunization of mice with SRBC is influenced by streptomycin (Toshkov and Slavcheva, 1968); in chickens Chlortetracycline affects the kinetics of the antibody response to Salmonella cholerasuis (Prochâzka et al., 1968). These facts must be taken into account when comparing our data on RFC in different experimental groups during the primary and secondary response against RaRBC. In control groups, injected with RaRBC, maximum percentages of RFC scored were 1.5—3. This is in the same order of magnitude as reported by Chiller et al. (1969) for rainbow trout and Warr et al. (1977) for goldfish. OxyTC suppressed the number of RFC independent of the route of administration. 160 Taking oxyTC serum levels into account when regarding the effects of oxyTC on the humoral and cellular immune response, the humoral immune system might be more sensitive to low levels of antibiotics. This is suggested by the observation that serum levels of oxyTC were low and humoral immunity was suppressed while cellular immunity was not affected in animals which were fed with oxyTC-containing pellets. Animals injected with oxyTC showed raised levels of granulocytes in their spleen. The function of granulocytes in fish is not yet clear. A mast cell function is suggested by Ellis (1977) and Barber and Mills Westermann (1975, 1978). It is known that mammalian granulocytes fulfill an important role in non-specific defence. It is tempting to speculate that in those cases where specific lymphoid defence mechanisms are blocked, the phagocytic system becomes more active. The presented results have shown that oxyTC dramatically suppresses the immune system of carp. Cellular immunity is suppressed when injecting the antibiotic, but not by oxyTC feeding. Humoral immunity however is suppressed in all cases. Thus, bacterial growth and the specific defence mechanism of fish are suppressed by oxyTC at the same time. Consequently any non-bacterial infection or an invasion by resistant bacteria causes serious problems. Since the concentration of oxyTC used in commercial fish farming is the same as that used in our feeding experiments we recommend a selective and very cautious use of this antibiotic. It may be useful to develop proper vaccination methods for the prevention of the major diseases in large-scale fish culture. In this respect more basic research on issues like raising long-term immunological memory in fish is needed. ACKNOWLEDGEMENTS We are grateful to Professor J.F. Jongkind and Professor E.A. Huisman (Agricultural University, Wageningen) for helpful advice during the performance of this study and preparation of the manuscript. Furthermore, we thank Dr. R. Bootsma (Veterinary Faculty, University of Utrecht) for his interest and valuable suggestions. REFERENCES Amlacher, E., 1976. Taschenbuch der Fischkrankheiten. Gustav Fischer Verlag, Jena, 286 pp. Barber, D.L. and Mills Westerman, J.E., 1975. Morphological and histochemical studies on a PAS-positive granular leucocyte in blood and connective tissue of Catostomus commersonnii Lacépède (Teleostei: Pisces). Am. J. Anat., 142: 205—220. Barber, D.L. and Mills Westermann, J.E., 1978. Occurrence of the periodic acid-Schiff positive granular leucocyte (PAS-GL) in some fishes and its significance. J. Fish Biol., 12: 3 5 - 4 3 . 161 Bauer, O.N., Musselius, V.A. and Strelkov, Yu.-A. ( 1969. Diseases of Pond Fishes. Izdatel'stvo Kolos, Moskva, 220 pp. Bennett, J.V., Brodie, J.L., Benner, E.J. and Kirby, W.M.M., 1966. Simplified, accurate method for antibiotic assay of clinical specimens. Appl. Microbiol., 14: 170—177. Biozzi, G., Stiffel, C , Mouton, D., Liacopoulos-Briot, M., Decreusefond, C. and Bouthillier, Y., 1966. Etude du phénomène de l'immunocytoadhérence au cours de l'immunisation. Ann. Inst. Pasteur, Suppl. 3 : 1—32. Braude, R., Kon, S.K. and Porter, J.W.G., 1953. Antibiotics in nutrition. Nutr. Abstr. Rev., 2 3 : 4 7 3 - 4 9 5 . Chiller, J.M., Hodgins, H.O., Chambers, V.C. and Weiser, R.S., 1969. Antibody response in rainbow t r o u t (Salmo gairdneri). I. Immunocompetent cells in the spleen and anterior kidney. J. Immunol., 102: 1193—1201. Cooper, E.L., 1976. Comparative Immunology. Prentice-Hall, Englewood Cliffs, 338 pp. De Vries, H. and Kroon, A.M., 1970. On the effect of chloramphenicol and Oxytetracycline on the biogenesis of mammalian mitochondria. Biochim. Biophys. Acta, 2 0 4 : 531—541. Ellis, A.E., 1977. The leucocytes of fish: a review. J. Fish Biol., 1 1 : 453—491. Finland, M., 1975. Relationships of antibiotics in animal feeds and salmonellosis in animals and man. J. Anim. Sei., 4 0 : 1222—1236. Fortushnyi, V.A., Novikov, V.M. and Genserovskaya, V.K., 1973. Influence of antibiotics on formation of immunity in experimental Erysipelothrix infection in pigs. In: Immunitet sel'skokhozyaistvennykh. Izdatel'stvo Kolos, Moskva, pp. 196—201 (in Russian). Ghittino, P., 1972. The principal aspects of bacterial fish diseases in Italy. In: L.E. Mawdesley-Thomas (Editor), Diseases of Fish. Academic Press, London, pp. 25—38. Glick, B., 1968. The immune response of bursaless birds as influenced by antibiotics and age. Proc. Soc. Exp. Biol. Med., 127: 1054—1057. Guest, G.B., 1976. Status of FDA's program on the use of antibiotics in animal feeds. J. Anim. Sei., 4 2 : 1052—1057. Herman, R.L., 1969. Oxytetracycline in fish culture — a review. Tech. Pap. Bur. Sport Fish. W i l d l . , 3 1 : 3 - 8 . Hildemann, W.H., 1957. Scale homotransplantation in goldfish (Carassius auratus). Ann. N.Y. Acad. Sei., 6 4 : 7 7 5 - 7 9 1 . Hildemann, W.H. and Cooper, E.L., 1963. Immunogenesis of homograft reactions in fishes and amphibians. Fed. P r o c , 2 2 : 1145—1151. Hildemann, W.H. and Haas, R., 1960. Comparative studies of homotransplantation in fishes. J. Cell. Comp. Physiol., 5 5 : 227—233. Kreutzmann, H.L., 1977. The effects of chloramphenicol and Oxytetracycline on haematopoiesis in the European eel (Anguilla anguilla). Aquaculture, 10: 323—334. Levy, L., 1963. Effect of drugs on goldfish scale homograft survival. Proc. Soc. Exp. Biol. Med., 114: 4 7 - 5 0 . Martin, B., 1973. The use of antibiotics in cattle practice. Vet. R e c , 9 3 : 1 2 1 . Mitra, R. and Ghosh, S.C., 1967. The effect of Terramycine on the growth of some freshwater food fishes: (Labeo rohita, Catla catla and Cirrhina mtigala). Proc. Nat. Acad. Sei., India, Sect. B. (Biol. Sei.), 3 7 : 4 0 6 - 4 0 8 . Nikolaev, A.I. and Nazarmukhamedova, M.N., 1974. Effect of streptomycin and Oxytetracycline on the number of antibody forming cells and haemagglutinin titre in immunized animals. Zh. Mikrobiol., Epidemiol. Immunobiol., 8: 93—95 (in Russian, with English abstract). Popovic, M., Galic, M., Dujin, T. and Majstorovic, G., 1973. Effect of parenteral injection of therapeutic doses of penicillin and Oxytetracycline on the titre and persistence of Brucella agglutinins in the blood of immunized pigs. Vet. Glas., 2 7 : 647—651 (in Serbo-Croat, with English abstract). 162 Prochazka, A., Rodak, L. and Krejci, J., 1968. The influence of Chlortetracycline on the immunological reactivity of chickens. Folia Microbiol. (Prague), 1 3 : 490—494. Roberts, R.J. and Shepherd, C.J., 1974. Handbook of Trout and Salmon Diseases. Whitefriars, London, 168 pp. Rijkers, G.T. and Van Muiswinkel, W.B., 1977. The immune system of cyprinid fish. The development of cellular and humoral responsiveness in the rosy barb {Barbus conchonius) In: J.B. Solomon and J.D. Horton (Editors), Developmental Immunobiology. ElsevierNorth Holland, Amsterdam, pp. 233—240. Sanford, J., 1976. The selection of antibiotics. Vet. R e c , 9 9 : 61—64. Schaperclaus, W., 1967. Erfolgreiche Bekämpfung der infectiösen Bauchwassersucht des Karpfens mit antibiotischen Mitteln in 11 Jahren. Z. Binnenfisch. D.D.R., 14: 64—66. Schaperclaus, W., 1969. Grundsätze der Prophylaxe und Therapie der Fischkrankheiten. Z. Binnenfisch. D.D.R., 1 6 : 142—158. Slanetz, C A . , 1953. Influence of antibiotics on antibody formation. Antibiot. Chemother., Wash., D.C., 3 : 6 2 9 - 6 3 3 Steucke, E.W. and Schoettger, R., 1967. Comparison of three methods of sampling trout blood for measurements of hematocrit. Progr. Fish Cult., 29: 98—101. Sukhoverkhov, F.M., 1967. The effect of cobalt, vitamins, tissue preparations and antibiotics on carp production. Proc. World Symp. on Warm Water Pond Fish Culture. FAO Fish. Rep., 44: 401—407. Swann, M.M., 1969. Report of the Joint Committee of the Use of Antibiotics in Animal Husbandry and Veterinary Medicine. H.M.S.O., London, 83 pp. Toshkov, A. and Slavcheva, E., 1968. Effects of streptomycin on antibody producing cells in the spleen of albino mice. Folia Microbiol., 1 3 : 177—179. Van Duijn, C , 1 9 7 3 . Diseases of Fishes. Butterworth, London, 372 pp. Warr, G.W., DeLuca, D., Decker, J.M., Marchalonis, J.J. and Ruben, L.N., 1977. Lymphoid heterogeneity in teleost fish: studies on the genus Carassius. In: J.B. Solomon and J.D. Horton (Editors), Developmental Immunobiology. Elsevier-North Holland, Amsterdam, pp. 2 4 1 - 2 4 8 . Watson, J.D., 1975. Molecular biology of the Gene. W.A. Benjamin, Menlo Park, 739 pp. Zaalberg, O.B., 1964. A simple method for detecting single antibody forming cells. Nature (London), 202: 1 2 3 1 . 163 APPENDIX VI 165 or by a decomposition product (Sanford, 1976). An adverse effect of antibiotics which is rarely taken into account is the effect on the immune system. I t has been demonstrated that antibiotics can induce immunosuppression in man (Daikos and Weinstein, 1951; Daniel et a l . , 1964), laboratory animals (Stevens, 1953; Weisberger et a l . , 1964), domestic animals (Fortushnyi et a l . , 1973; Lyashenko, 1966), birds (Lakhotia and Stephens, 1972; Panigrahy et a l . , 1979) and fish (Hildemann and Cooper, 1963; Levy, 1963). Reports on the effects of antibiotics in fish mainly deal with cellular immunity. I t appeared that antibiotics can delay allograft rejection (Hildemann and Cooper, 1963; Levy, 1963). In a previous paper (Rijkers et a l , 1980a) we reported the immunosuppressive effect of Oxytetracycline (oxyTC) in carp. I t was shown that both cellular and humoral immunity were depressed after feeding or injecting the antibiotic. In this paper the effect of oxyTC upon the regulation of humoral immunity in fish is studied in more d e t a i l . On base of the differential effects of oxyTC on primary and secondary immune responses we propose a model for t h e c e l l u l a r interaction during the humoral immune response in f i s h . MATERIALS AND METHODS Animals Carp (Cyprnnusoavpio) were bred in our laboratory. They were kept in aquaria with running tap water at 20°C. Animals were fed daily on pelleted dry food (K30, Trouw & Co, Putten, The Netherlands), amounting 2.5% of their body weight, by means of a "Scharflinger" automatic feeder. Eight to twelve months old animals, weighing 100-300 g were used. Antibiotic Oxytetracycline (oxyTC) was administered either by intraperitoneal ( i . p . ) injection of a 50 mg/ml Engemycine^solution (Mycofarm, De B i l t , The Netherlands) or orally by feeding pellets supplemented with 2000 ppmoxyTC. Antisera Goat antiserum to rabbit IgG conjugated to peroxidase (GAR/IgG/P0) was obtained from Nordic (Tilburg, The Netherlands). Rabbit antiserum to pike immunoglobulin heavy chains (RAP/Ig/H) was prepared and described by Clerx (1978).Rabbit antiserum to carp immunoglobulin (RAC/Ig) was prepared as described previously (Davina et a l . , 1980). 168 Quantitation of immunoglobulin and protein levels The enzyme-linked immunosorbent assay (ELISA) and rocket electrophoresis were used to quantitate immunoglobulin levels using normal carp serum as a standard. In the ELISA, essentially the procedure of Voiler et a l . (1976) was followed. Carp serum was coated to polystyrene microhaemagglutination plates in two-fold serial dilutions starting with 1:12,000. RAP/Ig/H (1:100) and GAR/IgG/PO (1:100) were used as antiserum and enzyme labeled antiglobulin respectively. After incubation with substrate (hydrogen peroxide and 5-aminosalicylic acid) 450 nmabsorbance was measured with a Titertelc^Multiskan (Flow, McLean, USA). In the rocket electrophoresis according to Laurell (1972) gels made up of 1% RAC/Ig and 1% agarose (No. 4, Nordic) in high resolution buffer, pH 8.8 (Gelman, Ann Harbor, USA) were used.Prior to the electrophoretic run (110 V, 21 h, room temperature) samples were carbamylated according to weeke (1968). Total serum protein was determined according to Lowry et a l . (1951) using bovine serum albumin (BSA, Organon Teknika, Oss, The Netherlands) as a standard. Antigen and immunization Sheep red blood cells (SRBC) were obtained from the Department of Animal Husbandry, Agricultural University, Wageningen. Cells were washed 3 times with phosphate buffered saline (PBS, pH 7.2) before use. 10 SRBCwere injected intramuscularly (i.m.) in the dorsal region. I f needed a second injection was given 1 month later. PFC assay Antibody forming cells (PFC) were determined with the haemolytic plaque assay adapted for carp as described previously (Rijkers et a l . , 1980b). Bream{Abramis brama) serum was used as complement source. PFC siides-were incubated at 25°C for 2 h. Experimental set-up Animals were divided into 3 groups. Control animals received no oxyTC. OxyTCfeeded animals received pellets containing 2000 ppm oxyTC (50 yg oxyTC/g fish/day). OxyTC-injected animals received an i . p . injection of Engemyciné^every 3 days (20 yg oxyTC/g fish/day). Primary and secondary anti-SRBC responses and serum analysis were carried out after treatment of the animals for 6 weeks. During the anti-SRBC response oxyTC treatment was continued. 169 RESULTS Serum analysis Feeding oxyTC had no effect on total serum protein concentration, while oxyTC-injection reduced protein levels only by 20%. In contrast to total protein, serum immunoglobulin levels were markedly reduced after oxyTC feeding (decrease 40-75%) and oxyTC injection (55%) (TABLE I ) . TABLE I The effect of Oxytetracycline on serum protein and immunoglobulin levels in carp Protein Immunoglobulin (U/ml) (mg/ml) Rocket ELISA Control 4.63 + 0.42 150 + 36 116 + 11 OxyTC-feeding 4.72 + 0.30 40 + 10 102 + 19 OxyTC-injection 3.71+0.10 67 + 37 n.d. Treatment Protein and immunoglobulin (lg) determinations were carried out in sera of normal carp (control) and animals treated with Oxytetracycline (oxyTC) for 6 weeks. Ig concentration was determined with the rocket and ELISA technique and expressed as arbitrary units (U/ml). "Arithmetic mean + 1 S.E. (n=4), **n.d.= not done. Primary and secondary anti-SRBC response g Animals were injected with 10 SRBC ( i . m . ) . At day 12 after injection (peak of the response) spleen, pronephros and mesonephros were removed for determination of the number of antibody forming c e l l s . Control animals showed PFC levels comparable with results obtained earlier (Rijkers et a l . , 1980c). PFC numbers in spleen, pronephros and mesonephros were reduced by approximately 85%after feeding with oxyTC. OxyTC injection caused an even stronger inhibition (95%, Fig. 1). To investigate the effect of oxyTC on the formation of immunological memory and the secondary response, animals which were treated for 2 weeks were injected with a g priming dose of 10 SRBC ( i . m . ) . A second injection was given 4 weeks later. Control animals tested on day 12 (peak of the response) showed a 10-fold enhancement of PFC numbers compared with the primary response. Surprisingly, the secondary response in oxyTC-feeded and oxyTC-injected animals was not significantly different from the response in control animals (Fig. 2). In conclusion oxyTC caused a strong inhibition of the primary anti-SRBC response 170 PFC/10 6 WC 10 2 ifi ft 10'. p n 1J pronephros spleen 1 mesonephros Fig. 1. Primary anti-SRBC response in carp. All animals were given an intramuscular injection with 10-? SRBC after treatment for 6 weeks. The number of plaque forming cells (PFC) per 106 white cells (WC) in spleen, pronephros and mesonephros of control (open bars), oxyTC-feeded (shaded bars) or oxyTC-injected animals (hatched bars) was determined 12 days after injection. Each bar represents the arithmetic mean + l.S.E. (n=4). PFC/106WC 104_ 103_ A A i 2 10 II A A A I 10'_ 1J spleen i y pronephros A mesonephros Fig.2. Secondary anti-SRBC response in carp. All animals were given a primary intramuscular (i.m.) injection with 109 SRBC after treatment for 2 weeks. The response was measured 12 days after a second i.m. injection which was given 4 weeks after priming. See Fig. 1 for further explanation. 171 whereas the formation of immunological memory and the secondary response i t s e l f were apparently not affected. Regulation by specific antibody Antigen presentation at the start of the secondary response might be different from the same process during a primary response due to the presence of some specific antibody at the i n i t i a t i o n of the secondary response. In order to investigate this hypothesis carp were i.m. injected with SRBC simultaneously with an i.v. administered anti-SRBC serum simulating a "secondary" antigen presentation during a primary response. In preliminary experiments various dosages of carp anti-SRBC serum were tested. Dilutions of 1:10 and 1:100 were inhibitory but a dilution of 1:1000 caused a significant increase in the number of PFC in pronephros and mesonephros compared with control animals which were injected with SRBC and normal carp serum. As expected oxyTC depressed the primary anti-SRBC response when normal carp serum was injected in combination with the antigen. However, anti-SRBC serum (1:1000) abolished completely the immunosuppressive effect of oxyTC on the primary response in oxyTC-feeded animals. In oxyTC-injected animals the same phenomenon was observed but to a lesser extent (TABLE I I ) . TABLE I I The effect of antibody on the primary anti-SRBC response in carp Treatment Plaque forming cells / 10 white cells Spleen NCS Control Pronephros anti-SRBC NCS Mesonephros anti-SRBC NCS anti-SRBC 29+4 37+9 59+7 179+45 29+5 76+23 OxyTC-feeding 4+2 67+28 27+11 151 +34 15+6 79+11 OxyTC-injection 2+1 24 + 5 5 94+31 2+1 34+11 o Carps treated for 6 weeks were injected intramuscular with 10 SRBC. At the same time the animals were injected intravenously either with 0.5 ml carp anti-SRBC serum (agglutination-titre: 2 1 " ) , diluted 1:1000 in phosphate buffered saline (PBS) or with 0.5 ml normal carp serum (NCS, diluted 1:1000 in PBS). The number of plaque forming cells in spleen, pronephros and mesonephros was determined 12 days after injection. Arithmetic mean + 1 S.E. (n=4). 172 I t is concluded that the differential oxyTC sensitivity of primary and secondary immune responses is probably a reflection of differences in antigen presentation in rfhich specific antibody plays an important role. However, other factors (macrophages, suppressor cells) might be involved too since anti-SRBC serum can not f u l l y restore the primary anti-SRBC response in oxyTC-injected animals. DISCUSSION Our findings that serum immunoglobulin levels were reduced by 40-75% after DxyTC treatment (TABLE I) whereas the antibiotic had no effect on the secondary anti-SRBC response (Fig. 2) are apparently in contradiction with one another. One nay assume that under natural circumstances the vast majority of serum immunoglobulin is produced as consequence of secondary responses against so-called "environmental antigens" entering through epithelial barriers. In oxyTC treated animals these environmental antigens (as far as drug sensitive bacteria are concerned) are eliminated by the a n t i b i o t i c , causing diminished antigenic load and consequently reduced immunoglobulin levels. A comparable situation exists in germfree and specific pathogen free mice were low immunoglobulin levels were observed compared «ith conventional mice (Sell and Fahey, 1964; Van Snick and Masson, 1980). The secondary anti-SRBC response was evoked by a high antigen dose while secondary responses against environmental antigens are probably caused by low antigen doses. The influence of antigen dose in a secondary response w i l l be discussed in more detail when dealing with the regulation of the immune response. A discrepancy between immunoglobulin levels was observed when comparing the rocket and ELISA technique (TABLE I ) . This difference may be caused by the use of 2 different antisera for these techniques. Moreover, in rocket electrophoresis only precipitated complexes are visualized while in ELISA the a f f i n i t y of the antiserum for the antigen is important. The immunosuppressive effect of oxyTC on a primary anti-SRBC response as measured by PFC numbers confirmed our earlier results with the rosette assay (Rijkers et a l . , 1980a). However, under the experimental conditions during this study, secondary anti-SRBC responses were not inhibited by oxyTC. I t appeared that high doses of passively transfered specific antibody i n h i b i t the primary anti-SRBC response (feed back inhibition) whereas low antibody doses have a stimulating effect (TABLE I ) . The same phenomenon has been encountered in mice (Möller and Wigzell, 1965) and chickens (Morgan and Tempeli s , 1977). Following a primary injection with SRBC cell interaction is necessary for the development of a proper immune response. SRBC is generally accepted as a "T-dependent" antigen in mammals (Greaves et a l . , 1974) but also in fish (Sailendri, 1973). Nonlymphoid cells such as monocytes, macrophages and dendritic cells are involved in the regulation of the immune response and memory formation (Unanue, 1975; Van Rooijen, 1980). I t has been shown that antibiotics interfere both quantitatively and quantitatively with monocytes (Kreutzmann, 1977) and macrophages (Rhodes and Hsu, 1974; Alexander, 1975). These are interesting observations because macrophages play an essential role in antigen presentation (Mosier and Coppleson, 1968). Differences in antigen presentation during primary and secondary responses are caused by the formation of immune complexes. These complexes are an important factor in the regulation of memory formation and the secondary response i t s e l f . Depending on the antigen:antibody ratio and the antibody class involved immune complexes have an immunostimulating or an immunosuppressive effect (Eardley and Tempeli s , 1975; Gordon and Murgita, 1975; Klaus, 1978). Wehave shown that a primary anti-SRBC response is inhibited most clearly by oxyTC injections (Fig. 1.). As a consequence the antigen:antibody ratio in immune complexes w i l l be different for control, oxyTC-feeded and oxyTC-injected animals which may result in differences in memory formation. In addition, a second antigen injection in control and oxyTCtreated animals w i l l result in immune complexes with a different antigen:antibody r a t i o . Wehave shown that a second injection with a high antigen dose evoked a secondary response which was not affected by oxyTC (Fig. 2 . ) . However, a conclusion that a l l secondary responses are oxyTC insensitive is premature. More refined immunization schedules and antibiotic treatment regimens, as well as information on antigen trapping and persistence are needed to c l a r i f y the role of oxyTC in memory formation and secondary immune responses in' f i s h . On base of the data discussed above we propose the following model to explain the effect of oxyTC upon the immune response: During a primary response oxyTC reduces antigen presentation by non-lymphoid cells to a suboptimal level resulting in a depressed humoral response. Whena "secondary" antigen presentation is simulated by injecting specific antibody, antigen is presented in a supraoptimal way. The final antigen processing remains at an optimal level even after oxyTC interference. Therefore oxyTC has no inhibiting effect on normal or simulated secondary responses. Another possibility is an adverse effect of oxyTC upon cell interaction between lymphoid c e l l s . During the primary response cell interaction might be a prerequisite for differentiation of B-like cell into plasma cells. However, during the secondary response another type of antigen presentation permits a T-independent B cell response. I f this is true, oxyTC has no effect upon the secondary response. In conclusion a careful use of the drug oxyTC is recommended since oxyTC exerts an immunosuppressive effect under certain conditions. On the other hand the data presented here have shown that this drug can be a valuable tool for studying the regulation of the humoral immune response in lower vertebrates. 174 ACKNOWLEDGEMENTS The technical assistance of Mr. J.A.M. Wiegerinck and biotechnical support of Mr. S.H. Leenstra are gratefully acknowledged. Furthermore we thank Mr. W.J.A. Valen for drawing the figures, Mr. D. Gubbins (Cambridge, Mass., USA) for his work on the rocket electrophoresis and Or. J.P.M. Clerx (Dept. of General Virology, State University, Utrecht) for his generous g i f t of rabbit anti-pike immunoglobulin heavy chain serum. We are grateful to Prof. J.F. Jongkind for helpful advice during performance of this study and preparation of the manuscript. REFERENCES Alexander, J.W., 1975. Antibiotic agents and the immune mechanisms of defense. B u l l . N.Y. Acad. Med., 51: 1039-1045. Aoki, T . , 1974. Studies öf drug resistant bacteria isolated from water of carp-ponds and intestinal tracts of carp. Bull. Jap. Soc. Scient. Fish., 40: 247-254. Clerx, J.P.M., 1978. Studies on pike fry rhabdovirus and immunoglobulin of pike (Esox luoius). Thesis, State University of Utrecht, 102 pp. Daikos, G. and Weinstein, L., 1951. Streptococcal bacteriostatic antibody in patients treated with p e n i c i l l i n . Proc. Soc. exp. Biol. Med., 78: 160-163. Daniel, T.M., Suhrland, L.G. and Weiberger, A.S., 1964. The effect of chloramphenicol on the anamnestic antibody response to tetanus toxoid in man. J. Lab. Clin. Med., 64: 850-851. Davina, J.H.M., Rijkers, G.T., Rombout, J.H.W.M., Timmermans, L.P.M, and Van Muiswinkel, W.B., 1980. Lymphoid and non-lymphoid cells in the intestine of cyprinid f i s h . In: J.D. Horton (Editor), Development and Differentiation of Vertebrate Lymphocytes. Elsevier/North-Holland Biomedical Press, Amsterdam, pp.129-140. Eardley, D.O. and Tempelis, C.H., 1975. Antigen-antibody complexes produced in chickens tolerant to bovine serum albumin. J. Immunol., 115: 719-723. Fortushnyi, V.A., Novikov, V.M. and Genserovskaya, V.K., 1973. Influence of a n t i biotics on formation of immunity in experimental Erysipelothrix infection in pigs. In: Immunitet seVskokhozyaistvennykh zhivotnykh. Izdatel'stvo Kolos, Moscow, pp. 196-201 (in Russian). Gordon, J. and Murgita, R.A., 1975. Suppression and augmentation of the primary in vitro immune response by different classes of antibodies. Cell. Immunol., 15: 392-402. Greaves, il.F., Owen, J.J.T. and Raff, M.C., 1974. T and B lymphocytes. Origins, properties and roles in the immune response. Exerpta Medica, Amsterdam, 316 pp. Hildemann, W.H. and Cooper, E.L., 1963. Immunogenesis of homograft reaction in fishes and amphibians. Fed. P r o c , 22: 1145-1151. Klaus, G.G.B., 1978. The generation of memory cells I I . Generation of Bmemory cells with preformed antigen-antibody complexes. Immunology, 34: 543-652. Kreutzmann, H.L., 1977. The effects of chloramphenicol and Oxytetracycline on haematopoiesis in the European eel (Anguilla anguilla). Aquaculture, 10: 323-334. Lakhotia, R.L. and Stephens, J.F., 1972. Effects of Chlortetracycline on agglutinating antibody response to Salmonella typhimurium in young chickens. Avian Dis., 16: 1029-1034. Laurell, C.B., 1972. Electroimmuno assay. Scan. J. c l i n . Lab. Invest., 29 suppl. 124: 21-37. Levy, L., 1963. Effect of drugs on goldfish scale homograft survival. Proc. Soc. exp. Biol. Med., 114: 47-50. 175 Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J., 1951. Protein measurement with the Folin phenol reagent. J. b i o l . Chem., 193: 265-275 Lyashenko, A.T., 1966. Effect of feeding Chlortetracycline on agglutinin formation in pigs vaccinated against erysipelas. Veterinariya, 9: 198-201 (in Russian). Meyer, F.P., Schnick, R.A., Cumming, K.B. and Berger, B.L., 1976. Registration status of fishery chemicals, february 1976. Prog. Fish Cult., 38: 3-7. Möller, G. and Wigzell, H., 1965. Antibody synthesis at the cellular level. Antibody-induced suppression of 19S and 7S antibody response. J . exp. Med.,121: 969-989. Morgan, E.L. and Tempelis, C.H., 1977. The role of antigen-antibody complexes in mediating immunologic unresponsiveness in the chicken. J. Immunol., 119:1293-1298. Mosier, D.E. and Coppleson, L.W., 1968. A three-cell interaction required for the induction of the primary immune response in v i t r o . Proc. n a t l . Acad. Sei. USA, 61:542-547. Panigrahy, B., Grumbles, L.C., M i l l a r , D., Naqi, S.A. and H a l l , C F . , 1979. Antibiotic-induced immunosuppression and levamisole-induced immunopotentiation in turkeys. Avian Dis., 23: 401-408. Rhodes, M.W. and Hsu, H.S., 1974. Effect of kanamycin on the fate of Salmonella enteritidis within cultured macrophages of Guinea pigs. J. Reticuloendothel. S o c , 15: 1-12. Rijkers, G.T., Teunissen, A.G., Van Oosterom, R. and Van Muiswinkel, W.B., 1980a. The immune system of cyprinid f i s h . The immunosuppressive effect of the antibiotic Oxytetracycline in carp (Cyprinus oavpio L.). Aquaculture, 19: 177-189. Rijkers, G.T., Frederix-Wolters, E.M.H, and Van Muiswinkel, W.B., 1980b. The haemolytic plaque assay in carp {Cyprinus oarpio). J. Immunol. Methods, 33: 79-86. Rijkers, G.T., Frederix-Wolters, E.M.H, and Van Muiswinkel, W.3., 1980c. The immune system of cyprinid f i s h . Kinetics and temperature dependence of antibody producing cells in carp (Cyprinus oarpio). Immunology (in press). Sanford, J . , 1976. The selection of antibiotics. Vet. Rec, 99: 61-64. Sailendri, K., 1973. Studies on the development of lymphoid organs and immune responses in the teleost, Tilapia mossambica (Peters). Thesis, University of Madurai, 106pp. S e l l , S. and Fahey, J . L . , 1964. Relationship between y-globulin metabolism and low serum y-globulin in germfree mice. J . Immunol., 93: 31-87. Stevens, K.i'i., 1953. The effect of antibiotica upon the immune response. J . Immunol., 71: 119-124. Unanue, E.R., 1975. The regulation of the immune response by macrophages. In: R. Van Fürth (Editor) Mononuclear Phagocytes in Immunity, Infection and Pathology. Blackwell Scientific Publ., Oxford, pp. 721-738. Van Rooijen, N., 1980. Immune complex trapping in lymphoid f o l l i c l e s : a discussion on possible functional implications. I n : M.J. Manning (Editor) Immunological Memory. Elsevier/North-Holland, Amsterdam (in press). Van Snick, J.L. and Masson, P.L., 1980. Incidence and specificities of IgA and IgM anti-IgG autoantibodies in various mouse strains and colonies. J. exp. Med., 151: 45-55. Voller, A., Bidwell, D.E. and Barlett, A., 1976. Enzyme immunoassays in diagnostic medicine. Bull. W.H.O., 53: 55-65. Weeke, B., 1968. Carbamylated human immunoglobulins tested by electrophoresis in agarose and antibody containing agarose. Scan. J. c l i n . Lab. Invest., 21: 351-354. Weisberger, A.S., Daniel, T.M. and Hoffman, A., 1964. Suppression of antibody synthesis and prologantion of homograft survival by chloramphenicol. J . exp. Med., 120: 183-198. 176