T_5Q130_02052000

advertisement
BMT REGELTHEORIE Deeltentamen A (5Q134)
2 mei 2000
09.00 - 10.30 uur
Dit is een open boek tentamen. U mag UITSLUITEND het boek van Franklin OF het boek van
Close en Frederick gebruiken. Het gebruik van MATLAB op uw Notebook is toegestaan. Het
gebruik van andere programma’s is echt verboden. Beantwoord de vragen kort en bondig.
Motiveer steeds uw antwoord en laat zien hoe u aan uw antwoorden komt. Alleen het vermelden
van een antwoord is niet voldoende.
NB: MATLAB isnu alleen nuttig bruikbaar ter controle van vraagstuk 5.
Succes.
Vraagstuk 1 (20 punten)
Een ideale lineaire motor met motorconstante a [N/A] is via een spoel L [H] en weerstand R []
verbonden met een spanningsbron U [V].
De motor drijft een massa m [kg] aan. De massa ondervindt een wrijving b [Ns/m] en een
veerconstante k [N/m] in zijn bewegingsrichting. Bepaal een wiskundig model van dit systeem.
a)
b)
Wat zijn de toestandgrootheden?
Bereken een toestandsmodel van dit systeem met de snelheid v [m/s] van de massa als
uitgang en U als ingang.
Vraagstuk 2 (20 punten)
In een couveuse wordt o.a. de temperatuur geregeld met behulp van een elektrische verwarming
met vermogen qE [W]. Een ventilator in de couveuse zorgt voor een gelijkmatige verdeling van
de temperatuur. Deze ventilator wordt aangedreven door een ideale motor. Er blijkt in
rusttoestand een spanning U [V] over de motor te staan en een stroom I [A] door de motor te
lopen.
De baby produceert qB [W] warmte.
De couveuse, inclusief baby, heeft een warmtecapaciteit C [J/K] en een warmteweerstand R
[K/W] naar de omgeving. De omgevingstemperatuur bedraagt To [K].
a)
b)
Bereken het vermogen qV [W] van de ventilator.
Beschrijf een wiskundig model (differentiaalvergelijking) om de temperatuur T(t) in de
couveuse te berekenen.
Vraagstuk 3 (20 punten)
Gegeven is het volgende niet-lineaire systeem:
1
x (t )  x 2 (t )  x(t )  2
-
Bereken de werkpunten/het werkpunt
Bereken in elk werkpunt een gelineariseerd model
Is het gevonden gelineariseerde model stabiel?
Vraagstuk 4 (20 punten)
Van een dynamisch systeem is afgeleid dat de relatie tussen ingang u(t) en de uitgang y(t) kan
worden beschreven met de volgende differentiaalvergelijking:
3y(t )  2 y(t )  y (t )  4 y (t )  3u (t )  2u (t )
Op t=0 zijn de beginwaarden: y(0)=1; y (0)  2; y (0)=0.
a)
b)
Bereken Y(s) als functie van U(s) en de beginwaarden.
Bereken de overdrachtsfunctie H(s) van dit systeem.
Vraagstuk 5 (20 punten)
Overdrachtsfunctie H(s) van een systeem is gegeven door:
H ( s) 
2( s  1)
s( s  3)
Veronderstel dat de ingang u(t) de eenheidsstap is.
a)
b)
c)
Bereken de uitgang y(t).
Bereken y(t) met de inverse Laplace transformatie.
Bereken, indien mogelijk, y(0+) en y() met behulp van het begin- en eindwaarde
theorema.
2
Download
Random flashcards
fff

2 Cards Rick Jimenez

mij droom land

4 Cards Lisandro Kurasaki DLuffy

Rekenen

3 Cards Patricia van Oirschot

Test

2 Cards oauth2_google_0682e24b-4e3a-44be-9bca-59ad7a2e66a4

Create flashcards