2. Rol van ionenkanalen: elektrogenese

advertisement
2. Rol van ionenkanalen: elektrogenese
2. Rol van ionenkanalen: elektrogenese
Alle cellen in ons lichaam kunnen elektrische fenomenen opbouwen, die voor tal
van celfuncties en voor het overleven van en cel belangrijk zijn. Prikkelbaarheid is het
vermogen van de cel om op veranderingen in de omgeving te reageren. Enkele cellen
beantwoorden prikkels met specifieke veranderingen van membraankenmerken met als
gevolg de stimulatie van een actiepotentiaal.
2.1
Elektrofysiologische methoden
In een cel ontstaat een potentiaalverschil tussen binnen en buiten, de
membraanpotentiaal. Om zulke mechanismen met als gevolg potentiaalveranderingen te
kunnen bestuderen, moet een meetmethode beschikbaar zijn. De membraanpotentiaal kan
gemeten worden door het aanwenden van de nu klassieke micro-elektroden techniek. Een
micro-elektrode bestaat uit een glazen buisje, uitgerekt tot een fijne punt met diameter <
1 µm en gevuld met een goed geleidende oplossing (3 M KCl). Dit type van elektrode
kan doorheen het celmembraan in het intracellulair milieu aangebracht worden. De
potentiaal wordt tussen de intracellulaire micro-elektrode en een indifferente
extracellulaire elektrode gemeten (figuur 2.1). Met de patch clamp methode kan, na
vorming van een “giga seal” en doorbreken van het celmembraan, makkelijk de
membraanpotentiaal worden gemeten.
15
2. Rol van ionenkanalen: elektrogenese
Figuur 2.1: Voor het meten van de membraanpotentiaal V wordt een pipette in de cel
gestoken. De lek (RS) tussen glas en cel bepaalt de meting. De rustpotentiaal is nagenoeg
een K+ evenwichtspotentiaal, RK is de reciproke K+conductantie. V is alleen identiek met
de rustpotentiaal als RS zeer veel groter dan RK is.
Stroommetingen worden met de “voltage clamp” methode uitgevoerd. Voor een
stroom van de ionensoort i geldt
I i = g i (V )∗ (V M − E i )
met als membraankonduktantie gi en de drijvend kracht VM - Ei. Om de stroom
juist te kunnen meten moet dus de drijvende kracht constant blijven maar moet de invloed
van de potentiaalafhankelijkheid van g uitgeschakeld worden. Om deze reden werd een
methode ontwikkeld die de membraanpotentiaal vastklemt (spanningsklem, “voltage
clamp”). Aan een versterker A2 wordt een commando spanning geappliceerd, Vcmd. Aan
deze spanning moet de cel worden geklemd (via elektrode ME2). Met de electrode ME1
wordt de membraanpotentiaal gemeten (versterker A1). Het spanningssignaal wordt terug
gekoppeld naar A2. Is er een verschil tussen dit signaal en Vcmd wordt een stroom in de
cel gestuurd die het verschil weer compenseert. De stroom die voor deze
spanningscompensatie nodig is, is de membraanstroom die bij de potentiaal Vcmd vloeit.
16
2. Rol van ionenkanalen: elektrogenese
Figuur 2.2: voltage
clamp meting. De
membraanpotentiaal
van een cel wordt aan
een vrij gekozen
potentiaal Vcmd
(van”command”)
geklemd. Elektrode 1
(ME1) meet de
membraanpotentiaal.
A2 is een differentieversterker. Als de
differentie (VM - Vcmd)
van nul verschilt, wordt
via elektrode ME2 een
stroom in de cel
teruggestuurd
(feedback) die het
potentiaalverschil
opheft ( is de
elektrodenweerstand).
Een verdere methode om ionenstromen te kunnen bestuderen onder voltage clamp
condities, is de patch-clamp techniek. “Patch clamp” is een methode, niet allen om een
zeer kleine zone van een membraan te onderwerpen aan een spanningsklem en zodoende
de stroom door individuele kanalen te bestuderen maar ook om na acces stromen door het
ganse celmembraan te bestuderen (“whole cell” versie van de “patch clamp” techniek).
Dus, door deze methode zijn middels verschillende varianten (configuraties)
verschillende metingen mogelijk: a) membraanpotentiaal metingen, b) metingen van
individuele ionenkanalen, c) metingen van grote populaties van ionenkanalen in een
membraan - patch (macro patch methode), d) stroommetingen van het hele celmembraan
(“whole cell” methode), e) opladen van cellen via de patch-pipette met verschillende
substanties, f) het meten van de membraancapaciteit om bvb. exocytose te kunnen
volgen.
17
2. Rol van ionenkanalen: elektrogenese
versterker
V M [mV]
VM
0
metingen
-50
microelectrode
-100
-150
E K = (RT/F) ln ( [K+] e/ 140 )
uitwisseling van oplossingen
met verschillenden
K + concentraties, [K + ]e
-200
-250
0.001
[K+] e [mM]
0.01
0.1
1
10
100
figuur 2.3: rustpotentiaal meting met veranderingen in de extracellulaire K+
concentratie. De rechte is de NERNST vergelijking.
2.2
Rustpotentiaal
De rustpotentiaal als een diffusie potentiaal werd al besproken. Een meting van
deze potentiaal met bvb. een micro-electrode geeft het volgende resultaat aan: Het
inwendige van de cel is negatief t.o.v. het extracellulair milieu als van een normale
extracellulaire K+ concentratie van 5 mM uitgegaan wordt. De rustpotentiaal is dan
ongeveer tussen -65 en -80 mV wat voor vele celtypen kenmerkend is. Wordt nu de
extracellulaire K+ concentratie veranderd, dan verandert ook de rustpotentiaal. Voor
hoge K+ concentratie volgt de rustpotentiaal de evenwichtspotentiaal voor K+ , EK . Bij
lagere K+ concentraties depolariseert de cel meer en wordt een duidelijk verschil tussen
rustpotentiaal en EK aangetoond. Dat wordt door twee feiten verklaard: 1. gK neemt bij
lagere K+ concentraties weer af, dus neemt de invloed van de Na+ conductantie relatief
toe. Daalt de extracellulaire K+ concentratie dan daalt ook de conductantie van het K+
“inward rectifier” kanaal., 2. ontbreekt [K+]e wordt de Na+ / K+ pomp geïnhibeerd die
normaliter een hyperpolariserende bijdrage tot de rustpotentiaal aflevert.
18
2. Rol van ionenkanalen: elektrogenese
Box 1:
De rustmembraanpotentiaal Vr is dus de membraanpotentiaal als de netto
membraanstroom, IM, gelijk is aan nul : IM = 0
Vr =
gK ∗ E K + g Na ∗ E Na + gCl ∗ ECl +...
gK + g Na + gCl +...
De membraanpotentiaal streeft altijd naar de evenwichtspotentiaal van die
ionensoort waarvoor die de grootste conductantie bestaat (bvb. geactiveerde
kanalen).
V M [mV]
E Na
versterker
0
VM
stroominjektie
electrode 1
electrode 2
drempel
-80 mV
1 ms
EK
I [mA/cm2]
prikkel
figuur 2.4: meten van een actiepotentiaal
2.3
Actiepotentialen
Een elektrische stroom wordt als een prikkel doorheen het plasmamembraan
gestuurd. Door het intracellulaire toedienen van positieve ladingen wordt een
membraandepolarisatie veroorzaakt. Door deze lokale deppolarisatie wordt de
membraanpotentiaal voor korte tijd op een waarde enkele mV positiever dan het
rustpotentiaal gebracht. Na het beëindigen van de prikkel keert de membraanpotentiaal
spontaan terug naar de rustwaarde. Deze verandering volgt gewoon het passieve circuit
van het membraan (parallelschakeling van membraancondensator en
19
2. Rol van ionenkanalen: elektrogenese
membraanweerstand, figuur 2.4, spanning tussen rustpotentiaal en drempel) en wordt
electrotonus genoemd. Wanneer echter in prikkelbare cellen (zenuwcellen, spiercellen)
de cel hierdoor boven een bepaalde drempelpotentiaal (meestal 5 tot 10mV boven de
rustwaarde, de membraandrempel is de potentiaal waar met een kans van 0.5 een
actiepotentiaal ontstaat) gedepolariseerd wordt, dan ontstaat een actiepotentiaal. Er wordt
dan in het membraan een mechanisme geactiveerd waardoor de membraanpotentiaal plots
een grote, snelle en transiënte verdere depolarisatie vertoont. Deze potentiaalverandering
gaat meestal zo ver door dat gedurende korte tijd de membraanpotentiaal de nulwaarde
voorbijschiet ("overshoot") en het intracellulair midden positief wordt t.o.v. het
extracellulair midden (tot +40 mV). De actiepotentiaal speelt een belangrijke rol bij de
informatieoverdracht in de cel. Stel het volgende experiment: in een geïsoleerd
spierbundel of neuron, of zenuw wordt een depolariserende stroom geappliceerd. Deze
prikkel veroorzaakt een snelle verandering van de membraanpotentiaal: een snelle
depolarisatie wordt gevolgd voor een trage repolarisatie en dikwijls een hyperpolarisatie
voordat de membraanpotentiaal naar zijn rustwaarde terugkeert.
20 ms
figuur 2.5: Actiepotentialen van verschillende weefsels. A) hartcel, sinusknoop die
automatisch AP´s genereert, B) AP van een cardiale arbeidsvezel, let op het lange
plateau, C), skeletspier met een negatief na-potentiaal, D) neuron met hyperpolarisatie.
20
2. Rol van ionenkanalen: elektrogenese
De actiepotentialen verschillen in duur en vorm in verschillende weefsels.
Weefsels die een actiepotentiaal kunnen genereren worden “prikkelbaar” (“excitable”)
genoemd. In figuur 2.5 worden enkele voorbeelden gegeven voor zenuwen, skeletspieren,
gladde spier en hartspier. Een actiepotentiaal bestaat uit een depolarisatie- en
repolarisatiefase die soms door een plateau verbonden zijn.
Gedurende de snelle depolarisatiefase ontstaat niet alleen een daling van de
polariteit van de membraancondensator (depolarisatie), maar wordt het intracellulair
milieu positief t.o.v. het extracellulair milieu. De duur van deze depolarisatiefase
bedraagt ongeveer 1 ms en de maximum depolarisatie - snelheid, (dV/dt)[max], varieert
tussen 100 en 800 V/sec. In zenuwvezels, skeletspieren en de meeste gladde spieren volgt
hierop een snelle repolarisatie. Gedurende deze fase herstelt zich de normale polariteit
van het membraan. In de hartspier en in sommige gladde spieren blijft het membraan na
de snelle depolarisatie gedurende een zekere tijd (100-500 msec) op een waarde dicht bij
de nulpotentiaal (plateau - fase), alvorens snel te repolariseren. Tenslotte kan de
repolarisatiefase al of niet gevolgd worden door een na-depolarisatie (skeletspier, gladde
spier) of een na-hyperpolarisatie (zenuwen, gladde spieren, hartspier).
2.4
Diversiteit van ionenkanalen
In het vorige hoofdstuk hebben wij gezien dat een enorme variabiliteit bestaat in
actiepotentialen van verschillende weefsels. Deze variabiliteit wordt vooral veroorzaakt
door expressie van verschillende types van ionenkanalen. Alle ionenkanalen die een
inwaartse stroom doorlaten verlengen de actiepotentiaal en veroorzaken een depolarisatie.
Uitwaartse ionenstromen korten de actiepotentiaal in, induceren een repolarisatie of
hyperpolarisatie en herstellen dus de rustpotentiaal. De richting van de ionenstroom
wordt natuurlijk bepaald door hun omkeerpotentiaal, die identiek is met de
evenwichtspotentiaal als het om selectieve kanalen gaat. Anders is de omkeerpotentiaal
een mengpotentiaal uit verschillende evenwichtspotentialen. Dus, als (VM – Erev ) > 0 dan
wordt door het respectieve kanaal de actiepotentiaal verkort, is (VM-Erev) < 0, dan wordt
een verlenging veroorzaakt. Ionenkanalen met een meer positief omkeerpotentiaal
depolariseren, diegene met een meer negatieve omkeer potentiaal repolariseren.
2.4.1
Na+ kanalen
Na+ kanalen zijn voor een snelle informatieoverdracht verantwoordelijk. Ze
veroorzaken celdepolarisatie. Het bestaan van inactivering is enorm belangrijk voor een
21
2. Rol van ionenkanalen: elektrogenese
tijdelijke beperking van de celdepolarisatie en helpt K+ kanalen de cel weer de
repolariseren. Inactivering alleen kan geen repolarisatie veroorzaken (geen uitwaartse
stroom). Na+ kanalen bestaan uit een kanaalvormend α – sub-eenheid en een ß – subeenheid (skeletspier α-ß, hersenen α-ß1-ß2, zie figuur 1.7). Voor de α-sub-eenheid
bestaan tenminste acht, voor de ß - sub-eenheid tenminste 2 genen. De ß- sub-eenheid
versnelt de inactivatie (figuur 2.6). Figuur 2.6B toont een “single channel” meting van
Na+ kanalen.
A.
B.
Figuur 2.6. A: Snelle activering en inactivering van Na+ kanalen. Afwezigheid van de ß-subeenheid vertraagt de inactivering. B: “Gating” van Na+ kanalen. Opengaan aan het begin van
de activerende spanningspuls veroorzaakt een snelle activatie. Het kanaal kan niet heropenen
omdat de geïnactiveerde toestand bereikt werd en het heropenen zeer traag is. C. De
gemiddelde stroom van opeenvolgende metingen is een equivalent voor de “whole cell” Na+
stroom.
2.4.2
Spanning - gestuurde K+ kanalen, Kv
In alle prikkelbare cellen wordt het repolarisatieproces versneld doordat, eveneens
als gevolg van de depolarisatie, de conductantie voor K+ ionen is toegenomen. Hierdoor
zal meer K+ de cel verlaten. In vergelijking met de toename in conductantie voor Na+ zal
de K+ conductantie echter langzamer toenemen en alleen activering ondergaan (opengaan
van n poortjes). Door de verhoging van de K+ conductantie ontstaat een uitwaartse
stroom van K+ ionen en de cel repolariseert. Dit heeft een dubbel gevolg: 1) door de
repolarisatie zal de Na+ conductantie nog sneller dalen, 2) de activeringspoorten van de
22
2. Rol van ionenkanalen: elektrogenese
Figuur 2.7. A: Topologie van Kv K+ kanalen. De N-terminus bevat een
bindingsplaat voor een ß-sub-eenheid (vormt ook een “chain”). De N-terminal
“inactivation ball” kan het kanaal sluiten. B. K+ kanaal variabiliteit onstaat door
verschillende heteromeren-vorming.
K+ kanalen zullen terug sluiten (de-activeren, niet inactiveren). Het uiteindelijk resultaat
is een terugkeer naar de vertrektoestand, zowel voor wat de potentiaal als de conductantie
betreft.
K+ kanalen die door een depolarisatie open gaan vormen de Kv familie met als
sub-eenheid een structuur van zes transmembranaire helices. Vier van deze sub-eenheden
vormen het functionele kanaal (figuur 2.7).
23
2. Rol van ionenkanalen: elektrogenese
A
B
Figuur 2.8. A. Diversiteit van K+ kanaal inactivering. Boven: snelle
onactivering door binden van een sub-eenheid. B. “N-terminale “ball
and chain” mechanisme.
K+ kanalen zijn functioneel zeer divers. Ze worden door depolariserende
spanningen geactiveerd. Er bestaat een enorme variatie in de inactivering. Deze
24
2. Rol van ionenkanalen: elektrogenese
variabiliteit ontstaat door het vormen van heteromere kanalen (de hele familie omvat
Kv1.1 tot Kv1.9, verschillende leden van deze families kunnen heteromeren vormen), het
effect verschillende ß- subeenheden, en tal van verschillende α-subeenheden (alleen Kv1
heeft 9 verschillende subeenheden,). Sommige Kv kanalen inactiveren helemaal niet
(Kv2), sommige zeer snel (Kv4), sommige traag (Kv3). Sommige inactiveren alleen snel
in aanwezigheid van een ß- subeenheid (figuur 2.8).
K+ kanalen worden geïnactiveerd door het “ball and chain” mechanisme vanuit de
N-terminus die N-type inactivering genoemd wordt, of een vertraagde inactivering vanuit
de C-terminus die C-type inactivering heet. K+ kanalen beïnvloeden kritisch de duur van
de AP: afremmen van K+ kanaalactiviteit verlengt de AP, vergroting van een K+
conductantie kort de AP in. Zeer snel inactiverende K+ kanalen (ook IK, A genoemd) zijn
belangrijk voor het ontstaan van automatische elektrische activiteit in het zenuwstelsel.
Door dit snel inactiverend kanaal worden AP zeer kort en kunnen dus een grote
frequentie bereiken die belangrijk is voor het coderen van informatie.
2.4.3 Ca2+-afhankelijke K+ kanalen, IK,Ca
Een IK,Ca kanaal wordt geopend wordt door een stijging van intracellulaire [Ca2+]I
maar is ook potentiaalafhankelijk. Zij bestaan uit een kanaalvormende α- subeenheid met
een Ca2+ bindingsplaats in het C-terminus. Ca2+ verschuift de spanningsafhankelijkheid
voor het openen van het kanaal naar negative potentialen. Hetzelfde effect wordt bereikt
door binden van de ß-subeenheid. De ß-subeenheid sensibiliseert dus het kanaal voor
Ca2+ (figuur 2.9).
In zenuwuiteinden grijpt tijdens de actiepotentiaal een gevoelige stijging van
[Ca ]i plaats (i.e. de stimulus voor de vrijzetting van neurotransmitter). De gestegen
[Ca2+]i opent dan K+ kanalen die het membraan mee helpen repolariseren (stabiliserend
effect). Ca2+ gevoelige kanalen bestaan met een grote conductantie (250 pS, “big” BKCa)
en met kleinere conductanties (” small” en “intermediate” SKCa, IKCa ). Deze kanalen
beperken dikwijls door lange hyperpolariserende pauzes de elektrische activiteit in
neuronen. Voor vele vegetatieve functies zijn ze enorm belangrijk (bv. modulatie van
transmittervrijzetting, pacemaker activiteit in neuronen, regeling van Ca2+ signalen in
cellen, volume regeling, mitose ...).
2+
25
2. Rol van ionenkanalen: elektrogenese
S0
Ca2+ bowl, bindingsite
[Ca2+]i
Figuur 2.9 Ca2+ geactiveerd K+ kanaal (h:, human, slo). S0-helix is een anker voor
de β sub-eenheid,
die α en β subeenheden aan elkaar koppelt. Verschuiving naar
- binding ovan de ß-sub-eenheid aan de Nlinks door Ca2+ verhoging en door
terminale So helix.
26
2. Rol van ionenkanalen: elektrogenese
2.4.4
Inwaarts rectificerende K+ kanalen, Kir familie
Deze familie omvat door kanalen die een inwaartse rectificatie vertonen (K+
inward rectifying, Kir). Kir kanalen bestaan uit twee transmembranaire helices. Zes
families zijn gekloneerd (Kir1 – Ki6, met verschillende sub-families). Kir2.1 is en kanaal
dat sluit als de membraanpotentiaal verschuift naar potentialen meer positief dan EK.
Deze blok wordt veroorzaakt door binden van intracellulair Mg2+ in het kanaal (figuur
2.10). Daardoor kunnen lange depolarisaties bereikt worden. In aanwezigheid van
Kir2.1is door een kleine ladingsverschuiving al een grote depolarisatie mogelijk. Dit
mechanisme is bv. voor het ontstaan van de langdurende actiepotentiaal in het hart
belangrijk. Het bestaan van een inwaartse rectificatie beperkt ook de hyperpolarizatie die
door activering van de Na+ / K+ pomp veroorzaakt wordt. Kir2.1 is functioneel een van
de belangrijkste kanalen voor het ontstaan van de rustpotentiaal. Andere kanalen uit deze
familie zijn Kir1.1 (ROMK, K+ reabsorptie in de nier), Kir3.1 (GIRK het G proteïne
gestuurde “inward rectifying” K+ kanaal, dat voor de controle van de slagfrequentie van
het hart enorm belangrijk is).
27
2. Rol van ionenkanalen: elektrogenese
A
D
B
inwaartse
rectifikatie
C
I
V
+
K
++
- -
--
++
2+
Mg
2+
Mg
+
K
figuur 2.10. A. Topologie van Kir kanalen. B. inwaarts rectificatie
door Mg2+ blok (C.) Het aspartat “D” regelt de rectificatie (A).
28
2. Rol van ionenkanalen: elektrogenese
2.4.5
ATP- gevoelige K+ kanaal (KATP) , IK,ATP
Figuur 2.11 toont een K+ kanaal die door de intracellulaire ATP concentratie
geregeld wordt. Deze kanalen worden gevormd door twee proteïnen, de “inwaard
rectifier” Kir.6 en de ATP -bindend proteïne SUR (van sulphonyl-urea receptor die ATP
bindt). Dit kanaal opent als de ATP concentratie onder een kritische waarde daalt. In βcellen van de pancreas is dat kanaal de trigger voor de insuline secretie: stijgt de glucose
concentratie in het bloed dan wordt in de ß-cellen ATP verhoogd en ATP-gevoelige K+
kanalen sluiten. Dus ontstaat er een depolarisate die spanningafhankelijke Ca2+ kanalen
opent. De resulterende Ca2+ influx activeert de insuline exocytose (figuur 2.12). ATPgevoelige kanalen zijn te vinden in alle soorten spiercellen en in zenuwcellen, maar ook
in niet-prikkelbare cellen zoals endotheelcellen. Bijzonders belangrijk is KATP in de
hartspier. Vermindering van de zuurstofvoeding laat ATP dalen en veroorzaakt een
enorme AP inkorting. Dat is een van de triggers voor stoornissen van het hartritme na
hartinfarct, hartischemie etc.
A
B
figuur 2.11. Structuur van KATP kanalen SUR is de ATP-bindende-sub-eenheid. ATP wordt
aan de Walker-motieven (WA, WB) gebonden. De porie wordt door het Kir.6 kanaal gevormd.
ATP blokkeert het kanaal.
29
2. Rol van ionenkanalen: elektrogenese
Figuur 2.12. KATP speelt de hoofdrol in de insuline-secretie. Door glucose influx en ATP synthese wordt
het KATP kanaal gesloten, de cel depolariseert, spanningsgevoelige Ca2+ kanalen openen en triggeren
exocytose van insuline.
2.4.6
Ca2+ kanalen
Ca2+ kanalen bestaan in een grote diversiteit. Hier zullen alleen potentiaal gestuurde Ca2+ kanalen aan bod komen. In deze kanalen ondergaat de Ca2+ conductantie
ook een activering en een inactivering. In vergelijking met de Na+ kanalen hebben de
Ca2+ kanalen een hogere activeringsdrempel en verlopen zowel activering als inactivering
trager. In sommige cellen zoals in de sinusknoop en de atrio-ventriculaire knoop van het
hart, in gladde spiercellen en in de zenuwuiteinden (niet in het axon), wordt de
depolarisatie niet veroorzaakt door een verhoging van de Na+ conductantie maar door een
stijging van de Ca2+ conductantie (Ca2+ kanalen) en het naar binnenstromen van Ca2+
ionen. Tal van intracellulaire functies worden gestuurd door Ca2+. Het bestaan van
verschillende Ca2+ “entry” mechanismen is dus functioneel uiterst belangrijk. Tabel 1
geeft een overzicht over de diversiteit van spanningsafhankelijke Ca2+ kanalen en andere
Ca2+ permeabele kanalen.
Totnogtoe kennen we 9 genen die de α-sub-eenheid van Ca2+ kanalen coderen:
30
2. Rol van ionenkanalen: elektrogenese
•
•
•
•
•
L-type: α1S in skeletspier voor excitatie-contractie koppeling, α1D in endocrien
weefsel, hersenen, α1C in hart, gladde spiercellen, long. Deze kanalen
inactivieren door depolarisatie maar ook afhankelijk van [Ca2+]i .
N-type: α1B in neuronen, hersenen
P/Q-type: α1A in de hersenen
R-type: α1E, snel inactiveerend, in hart en hersenen
T-type: α1G in hart en hersenen, α1H in hart, α1I in hersenen en niet-prikkelbaar
weefsel
Figuur 2.13 geeft een voorbeeld voor T en L-type Ca2+ kanaal in het hart. Voor
alle Ca2+ kanalen bestaan er verschillen in de activeringsdrempel, snelheid van
inactivering, conductantie, modulering. Door een specifieke farmacologische
beïnvloeding van Ca2+ kanaal- types kunnen bepaalde celfunctie gemoduleerd worden,
bvb. L-type blokkers DHP om gladde spiercel kanalen in de vatwand af te remmen om
hypertensie te behandelen. Sommige ziekten zijn gekoppeld aan mutaties in Ca2+
kanalen (migraine, ataxie, spierziekten).
Structureel vertonen reeds gekloneerde L- en N-type Ca2+ kanalen gelijkvormige
kenmerken (4 domeinen met 6 segmenten, spanningssensor, porie- vormende regio tussen
S5 en S6). Met de kanaal -vormende subeenheden zijn er dikwijls meerdere andere
subeenheden verbonden (bv. voor de L- en N-type kanalen is de α1-subunit het kanaal
die gemoduleerd wordt door α2, β, γ, δ subunits). De α1-subunit is ook de DHP-receptor,
dihydropyridine bindingsplaats voor de kanaal-modulatie, b.v. Ca2+ kanaalblokker). Alle
Ca2+ kanalen zijn veel beter permeabel voor divalente kationen dan voor alle andere
kationen. Figuur 2.14 geeft een voorbeeld van de structuur van een potentiaal -gestuurd
Ca2+ kanaal.
31
2. Rol van ionenkanalen: elektrogenese
Figuur 2.13 Twee types van Ca2+ kanalen. T-type (links) kanalen hebben een
lage conductantie, 4-7 pS, en inactiveren snel. Ze worden al geactiveerd aan
potentialen rond -60 mV. Openingen zijn kort en in clusters. L-type Ca2+
kanalen worden bij hogere spanningen als T-type kanalen geactiveerd,
vertonen soms langdurende openingen en inactiveren zeer traag.
32
2. Rol van ionenkanalen: elektrogenese
A.
4 sub-eenheden: ß, α2, δ, γ
B.
Figuur 2.14 A. Structuur van spanning-afhankelijke Ca2+ kanaal met
subeenheden. B. Functionele topologie van Ca2+ kanalen. EC: structuur voor
excitatie-contractie koppeling, SS: structuur voor excitatie secretie
koppeling, binding van modulerende G-proteïnen, ß-subeenheid en motief
voor spanning (V) en Ca2+ afhankelijke inactivatie (L-type Ca2+ kanaal).
33
tabel 1:2. Rol van ionenkanalen: elektrogenese
type
kenmerken
potentiaal-gestuurde
Ca2+-kanalen
L-type (large, longactivering -40 mV, blok door
lasting)
dihydropyridine (DHP)
T-type (tiny, transient) activering -60 mV, blok door
Ni2+
N-type
activering -40 mV,
inactivatie, blok door
bepaalde toxinen
R-type
in hart, hersenen
P/Q-type
activering -50 mV, blok door
andere toxine dan N-type,
geen blok door DHP
ligand-gestuurde
Ca2+ kanalen
NMDA receptor
ligand glutamaat
ATP receptor
P2X receptor, kanaal uit
familie met 2 TM
Ca2+ kanalen
gestuurd door
tweede
boodschapperstoffen
Ca2+ of Ins(1,4,5)P3
ryanodine en Ins(1,4,5)P3
gestuurde kanalen
receptoren
mechanisch
geactiveerde Ca2+
kanalen
TRP kanalen
Ca2+ kanalen die
afhankelijk zijn van
de vulling van
intracellulaire Ca2+
opslagplaatsen
(CRAC, SOC).
Moleculaire
interactie tussen
STIM1 en ORAI
1,2,3
TRPC, TRPV, TRPM, en
TRPA kanalen, meest Ca2+
permeabel, niet-selectieve
cationenkanalen (laten Ca2+
maar ook Na+ en K+ door).
Alleen TRPV5 en TRPV6
zijn hoog selectief voor Ca2+
CRAC = calcium release
activated Ca2+ entry channels.
Ca2+ sensor in de stores is het
proteïne STIM1. Door
depletie van Ca2+ wordt
STIM1 verschoven in richting
plasmamembraan en
veroorzaakt daar activatie van
Ca2+kanalen die door de
membraanproteïnes ORAI
1,2,3 gevormd worden. Deze
proteïnes vormen ook de Ca2+
selectieve porie.
functie
excitatie-contractie koppeling,
excitatie-secretie koppeling
pacemaker in neuronen, hart
familie van neuronale Ca2+
kanalen, vrijzetting van
neurotransmitters
inactiveert sneller dan L, N
transmittervrijzetting in
bepaalde neuronen
excitatorische synapsen
Neuronen, gladde spiercellen
Ca2+ vrijzetting in spieren of
niet-prikkelbare cellen,
excitatie-contractie koppeling,
excitatie-secretie koppeling,
gen-expressie
gladde spieren en
endotheelcellen
veroorzaken depolarizatie en
Ca2+ influx, komen tot
expressie in misschien alle
cellen (maar verschillende
subtypes)
belangrijk voor Ca2+ entry in
alle niet-prikkelbaare cellen.
34
2. Rol van ionenkanalen: elektrogenese
2.4.7
Chloride kanalen
Een groot aantal van kanalen is alleen doorlaatbaar voor anionen. Wanneer ECl
zich, door passieve verdeling van Cl- ionen, bij de rustpotentiaal bevindt, dan wordt, door
activering van Cl- kanalen, de potentiaal gestabiliseerd. In skeletspieren speelt deze
stabilisering een grote rol. Enkele spierziekten zijn aan defecten in Cl- kanalen
gekoppeld. Figuur 2.15 toont de zeer ingewikkelde structuur van een grote familie van
Cl- kanalen in prikkelbare- en niet-prikkelbare cellen. Deze Cl- kanalen spelen een grote
rol bij verschillende celfuncties (zie tabel 2). Negen genen voor ClC kanalen zijn gekend.
Mutaties veroorzaken tal van ziekten.
A.
B.
Homo-dimer: „double barrel“
3D - structuur
Figuur 2.15: A. Monomer van het ClC kanaal. ClC kanalen worden gevormd
door schuine helices (A-R). Een chloride ion is in het kanaal getekend, een
negatieve lading boven het ion is een permeatie regulator. B. ClC kanalen
vormen dimeren maar elk monomer heeft zijn eigen porie!
Andere receptor- gestuurde kanalen zijn belangrijk in het centrale zenuwstelsel
voor modulatie van de synaptische overdracht (GABA - en glycine receptoren).
Voor secretie mechanismen zijn Cl- kanalen die door cAMP via fosforylering
geactiveerd worden enorm belangrijk (CFTR kanalen). Deze kanalen vertonen een
structuur van 2 keer 6 TM helices. Intracellulair zijn twee ATP bindend regio’s
gelokaliseerd (NBF1 en NBF2: NBF - “nucleotide bindings fold”). De fosforylatie van
dit kanaal gebeurt in het R-domein, via proteïne kinase A. Dit kanaal is defect bij een
35
2. Rol van ionenkanalen: elektrogenese
ziekte (mucoviscidose of cystische fibrose, taaie slijmziekte, zie hoofdstuk 1). Het kanaal
activeert door fosforylatie: een agonist die de secretie stimuleert wordt bv. aan een 7helix receptor gebonden, een Gs proteïne word geactiveerd, de R-regio wordt
gefosforyleerd. ATP moet aanwezig zijn.
Tabel 2.
ClC kanaal
ClC-1
expressie
skeletspier
ClC-2
ClC-3
ClC-4
ClC-5
Hart, hersenen, long,
pancreas, lever
Hart, nier, long
Hart, hersenen
Nier,
ClC-6
ClC-7
ClC-Ka
ClC-Kb
alomtegenwoordig
alomtegenwoordig
nier
nier
functie
Stabiliseren van het rustpotentiaal,
remmen van excitatie, mutaties
Thomsen´s ziekte, Becker´s ziekte
Volume regeling, voor inhibitie in
neuronen
Volume regeling, elektrogenese
Endocytose, in endosomen, lysosomen,
Dent´s ziekte
Intracellulair kanaal
Intracellulair kanaal
Cl- transport
Cl- transport, Bartter´s ziekte
Andere Cl- kanalen zijn ook spanningsafhankelijk, maar kunnen alleen opengaan
als [Ca2+]i verhoogd wordt (Ca2+ activated Cl- channels, ClCa). Deze kanalen komen in
prikkel- en niet-prikkelbaar weefsel tot expressie. In het epitheel zijn zij enorm belangrijk
voor Cl- secretie.
VRAC kanalen worden door celzwelling geactiveerd. Ze zijn dus zeer belangrijk
voor volume- regeling, maar ook voor elektrogenese, transport van aminozuren en
organische osmolyten (taurine), ze beïnvloeden de celcyclus en spelen blijkbaar een rol in
celproliferatie. Hun moleculaire structuur is nog niet gekend.
2.4.8
niet- selectieve kationenkanalen
Verschillende kanalen zijn niet selectief voor een bepaald ionensoort permeabel.
Functioneel belangrijk zijn niet- selectieve kationenkanalen die Na+ , K+ maar dikwijls
ook Ca2+ doorlaten. Sommigen worden door Ca2+ gestuurd: een activering gebeurt door
verhoging van de intracellulaire Ca2+ concentratie. Andere worden door cyclische
nucleotide gestuurd. In het sensorische systeem zijn niet-selectieve kationenkanalen die
door cAMP of cGMP geactiveerd worden belangrijk. Ze worden samengevat in de CNG36
2. Rol van ionenkanalen: elektrogenese
familie (cyclic nucleotide gated cation channels). CNG kanalen zijn belangrijk voor de
eerste signaalcodering in ons sensorische zenuwstelsel. Hun functie in staafjes en
kegeltjes in het oog kwam al aan bod (hoofdstuk 1). Mutaties in het oog - CNG
veroorzaakt celdood van staafjes en kegeltjes (Retinitis pigmentosa, patienten orden
blind). Ze worden ook via een G- proteïne afhankelijke proces door reukstoffen,
odoranten, geactiveerd en staan dus in voor de reukzin. Figuur 2.16 toont de
signaaltransduktiecascade voor de eerste stap in reukverwerking.
Fig.2.16 Signaaltransductie
cascade voor reukperceptie. De
olfactorische receptor is een
GPCR (serpent). Binden van een
odorant activeert een Golf proteïne
dat via adenylaatcyclase en cAMP
het CNG kanaal activeert en een
depolarisatie veroorzaakt.
CNG kanalen hebben zes transmembranaire helices een bepaalde regio voor
modulering. Figuur 2.17 toont het bouwplan van deze belangrijke kanalen.
Een andere niet-selectief kanaal wordt If genoemd (f van “funny” omdat dit
kanaal een eerder vreemd stelsel van kenmerken vertoond). Het kanaal wordt niet door
een depolarisatie maar door een hyperpolarisatie geactiveerd. Het wordt ook door
cyclische nucleotide geactiveerd. Deze kanaal-familie wordt dus HCN-familie genoemd
(“hyperpolarization and cyclic nucleotide activated cation channels”). Het wordt
uitsluitend in cellen gevonden die automatische actiepotentialen kunnen genereren (hart,
37
2. Rol van ionenkanalen: elektrogenese
neuronen, gladde spieren). Het kanaal opent bij potentialen negatiever dan -40 mV. Het is
permeabel voor Na+ en K+. Omdat aan deze potentialen de drijvend kracht voor Na+
veel groter is dan voor K+, is de stroom een inwaartse Na+ stroom die de cel
depolariseert. Dit kanaal wordt via de intracellulaire concentratie van cAMP
gemoduleerd door acetylcholine, noradrenaline, adrenaline (autonome neurotransmitters
die voor de regeling van de slagfrequentie van het hart belangrijk zijn).
Figuur 2.17: Structuur van een CNG kanaal. H5 is de porie. Bindingsplaatsen voor
Ca/calmoduline (modulatie van de kanaalactiviteit) en voor cyclische nycleotide in de Cterminus zijn aangeduid.
In HCN kanalen is het transmembranaire segment TM4 sterk positief geladen
(arg , lys+). HCN hebben dus ook een spannings-sensor zoals alle spannings-gestuurde
kanalen.
+
Figuur 2.18 geeft een voorbeeld voor de “gating” van dit kanaal en een meting in
een hartspiercel van de sinusknoop.
38
2. Rol van ionenkanalen: elektrogenese
+cAMP
1
open
0
gesloten
If
-40 mV
Figuur 2.18: If - gating en activering in het hart. Het kanaal
wordt traag door hyper - (of re-) polarisatie geactiveerd (boven)
en heeft alleen een activeringspoortje.
De metingen beneden tonen de stroomactivering aan in een
sinusknoop-cel van het hart.
39
2. Rol van ionenkanalen: elektrogenese
2.4.9
De TRPC kanaalfamilie
A.
porie
ankyrin repeat
domains
prolin-rich
TRP box
COOH
NH2
Polycystin
B.
TRPP
Melastatin
TRPM1
TRPM3
TRPM6
TRPM7
TRPM
TRPP3
TRPP5
MucoLipin
TRPML
TRPML3
TRPML2
TRPP2
Ankyrin
TRPML1
TRPM5
TPRM4
TRPM2
TRPM8
TRPA
TRPA1
TRPN
Vanilloid
TRPV1
TRPV2
TRPV
TRPV4
TRPV5
TRPV6
TRPV3
Canonical
TRPC3
TRPC7
TRPC6
TRPC
TRPC4
TRPC5
TRPC1
TRPC2 (mouse)
figuur 2.18a: A. Bouwplan van een TRP kanaal. B. Familie van de kationen - en
Ca2+ kanalen TRP (transient receptor potentiaal). 6 subfamilies zijn gekend met 1
tot 8 leden. De TRPC familie werd eerst ontdekt in de fruitvlieg drosophila. De
mens heeft 27 TRP kanalen (TRPC2 alleen in muis, TRPN niet in vertebraten).
In de laatste jaren werd een kanaalfamilie ontdekt die functioneel een enorme
impact heeft op verschillende celfuncties. Deze familie wordt door mutanten in de
40
2. Rol van ionenkanalen: elektrogenese
fruitvlieg drosophila ontdekt. Deze mutanten reageren op licht niet met een langdurende
receptorpotentiaal, maar wel met een kort “transient receptor potential” (TRP). De
genfamilie werd dus trp familie genoemd. Ze codeert TRP´s (TRP channels). De
bouwplan van deze sub-familie wordt in figuur 2.18a getoond. Kenmerkend zijn zes
transmembranaire helices, met tussen TM5 en TM6 de porie lus. In het N terminus zijn
verschillende domeinen gelokaliseerd die het cytoskelet proteïne ankyrine kunnen
binden, dus een contact vormen tussen cytskelet en TRPC. In het C-terminus vinden we
“prolin-rich” domeinen, die ook voor proteïne - proteïne interactie instaan. Zes TRP subfamilies worden onderscheiden:
•
TRPCs: “canonical” of “classic”, zijn homoloog met de eerste TRP kanaal in
drosophila. Deze vormen receptor -geactiveerde kationen kanalen, die via een
GPCR, die met een fosfolipase C gekoppeld is, geactiveerd worden (mogelijk via
DAG, di-acyl-glycerol, vetzuren, arachidoonzuur). Andere vormen CRAC of
SOC kanalen voor Ca2+ influx in niet-prikkelbare cellen. Totnogtoe zijn zeven
genen gekend, STRPC1-7, 700 – 1000 aminozuren (aa) lang
•
TRPMs: “melastatin”, ontdekt als tumor-repressor “melastatin. Zijn lang, dan
1200 aa. Melastatin is enorm belangrijk is voor celproliferatie. TRPM4 en
TRPM5 vormen Ca2+ impermeable TRPs, maar worden door een verhoging van
intracellulair Ca2+ geactiveerd. TRPM5 staat in onze smaakcellen in voor “zoet”,
“bitter” een “vlees” (“umami”). TRPM8 is een receptor voor koud en wordt ook
door mint geactiveerd. TRPM2 en TRPM7 hebben in hun C-terminus enzymes.
•
TRPVs: “vanilloid”, deze kanalen zijn belangrijk voor perceptie van peper,
paprika (capsaicine, chili), van hitte, van pijn (vanilloid receptoren). Een enorm
belangrijk lid van deze familie is ECaC, het epitheliale Ca2+ kanaal die instaat
voor Ca2+ reabsorptie in de nier in de dunne darm. ECaC is waarschijnlijk
vitamine D sensitief.
•
TRPA: “ankyrine”, deze familie heeft alleen i lid, TRPA1, die structureel
gekenmerkt is door zeer vele “ankyrine-repeat domains” die waarschijnlijk een
interactie maken met het cytoskelet. Het kanaal staat in voor pijn receptie,
misschien voor mechano-sensing, eventueel ook een sensor voor zeer lage koude
temperaturen.
41
2. Rol van ionenkanalen: elektrogenese
•
TRPML: korte TRP kanalen die misschien alleen in intracellulaire membranen
aanwezig zijn (bvb. lysosomen, endosomen), misschien H+ kanalen in deze
intracellulaire organellen. Mutaties in TRPML1 veroorzaakt “mucolipidose type
IV”, een mentale ziekte met motorische en visuele defecten.
•
TRPP: korte TRP kanalen, aanwezig in epitheelcellen, in primaire cilia, defecten
in deze kanalen veroorzaken bvb “Polycystic Kidney Disease, PKD”, cystennier.
TRP kanalen waren kandidaten voor SOC (“store operated” Ca2+ kanalen) en
CRAC (“Ca2+ release activated Ca2+ channels”). Deze theorie lijkt fout te zijn, We weten
nu dat SOCs, CRACs blijkbaar ORAI kanalen zijn (kanalen met 4 transmembranaire
helices) die een informatie over de vulling van de endoplasmatische (ER) Ca2+
opslagplaatsen verkrijgen via de Ca2+ - sensor proteïne STIM1. Als bvb door PLC
activatie een Nu Ca2+kanalen lid van deze familie te zijn. Deze kanalen worden door een
Ca2+ depletie in ER opslagplaatsen geactiveerd. Als Ca2+ in het ER daalt wordt STIM1
naar de plasmamembraan (PM) gestuurd. STIM1 verschijnt nu naast PM in
conglomeraten, “punctae”, en kan nu PM-kanalen ORAI activeren, die een hoog Ca2+
selectieve porie hebben. Ca2+ stroomt nu de cel binnen. De inwaarts stroom wordt
afgeremd als de Ca2+ opslagplaatsen weer gevuld zijn (figuur 2.18b).
42
2. Rol van ionenkanalen: elektrogenese
Rust: de Ca2+ sensor
STIM1 (proteïne met
1 transmembranaire
helix) is de Ca2+ sensor
in het endoplasmatisch
reticulum .
Store depletie,
STIM1 clustering
in “punctae” naast
de celmembraan
Gating:
ORAI/STIM1
interactie, Ca2+
inwaarts stroom
Figuur 18b: CRAC (Ca2+-release activated Ca2+ channels) or SOC
(store operated Ca channels) werken via STIM1 en ORAIs. De
ORAI familie heeft 3 leden, ORAI1,2,3.
43
2. Rol van ionenkanalen: elektrogenese
Figuur 2.18cgeeft een samenvatting van alle activeringsmechanismen voor CNG,
HCN en TRPC kanalen.
(PIP2)
TRPCs
+
+
figuur 2.18c: Activering van “cyclisch nucleotide gated channels” (CNG, HCN - “funny”)
via GPCR (GS) en TRPC´s via koppeling PLC. TRPC kanalen (niet-selectief, Ca2+
permeabel) worden geactiveerd via DAG, IP3 of Ca2+. ER is een Ca2+ store in het
endoplasmatische reticulum.
44
2. Rol van ionenkanalen: elektrogenese
2.5
Actiepotentialen in bepaalde prikkelbare cellen.
2.5.1
Skeletspiercel
De actiepotentiaal van een skeletspiercel wordt gekenmerkt door een snelle
depolarisatie, een snelle repolarisatie en een trage na-depolarisatie. De na-depolarisatie
kan verklaard worden door een verandering van EK als gevolg van het ophopen van
extracellulaire K+ in de enge ruimten van de T-tubuli. Daardoor wordt EK verschoven en
ontstaat er een depolarisatie t.o.v. de rustcondities. De Na+ / K+ pomp normaliseert de
extracellulaire K+ concentratie waardoor de membraanpotentiaal, EM, terug zijn
rustwaarde bereikt.
Figuur 2. 19: De
actiepotentiaal in een
skeletspiercel en de
veranderingen in ionconductanties en de
verandering van EK
2.5.2
Hartspiercel
Het hartspierweefsel (myocard) bestaat uit twee soorten weefsel: de contractiele
hartspiervezels (grootste massa; zorgt voor de pompfunctie) en het geleidingsweefsel
(zorgt voor de prikkelvorming; sinusknoop vertoont spontane activiteit of “pacemaker”
activiteit) en de snelle verspreiding van de prikkel (atrio-ventriculaire knoop, bundel van
45
2. Rol van ionenkanalen: elektrogenese
figuur 2.20: impuls- en
prikkelvormings-weefsel in het
hart.
His en Purkinje systeem). Elk van deze verschillende celtypen heeft zijn eigen soort
actiepotentiaal. De rustpotentiaal van de ventriculaire cel bedraagt ongeveer -85 mV. Bij
prikkeling ontstaat een actiepotentiaal die gekenmerkt wordt door een lang plateau tussen
de snelle depolarisatie en de snelle repolarisatie. De mechanismen die de depolarisatie en
de repolarisatie veroorzaken zijn dezelfde als voor het zenuwaxon. Tijdens de plateaufase
gebeurt er een Ca2+ influx.
2.5.2.1 Impulsgeleiding in het hart
Het hart gedraagt zich als een syncytium: in het normale hart reageren ofwel alle
spiervezels op een prikkel ofwel treedt er geen antwoord op (alles-of-niets wet).
Het hart vertoont een automatische ritmiciteit die berust op het voorkomen van
pacemaker-structuren. Deze structuren kunnen een electrisch impuls genereren, die via
een bepaalde weg wordt voorgeleidt. In het rechter atrium zit de sino-atriale knoop (SA
knoop, sinusknoop, sinu-atriale knoop, knoop van Keith/Flack). De cellen van de
sinusknoop zijn via nexus-strukturen (gap junctions) elektrisch gekoppeld. De impuls- of
prikkelvorming gebeurt hier met de hoogste frequentie. De enige geleidingsweg van de
atria naar de ventrikels wordt gevormd door de AV- knoop (met drie segmenten), de
46
2. Rol van ionenkanalen: elektrogenese
bundel van His die subendocardiaal op de rechter zijde van het septum ligt, de rechter en
linker Tawara bundeltakken en via de Purkinje vezels (netwerk van Purkinje) naar het
ventriculaire myocard of arbeidsmyocard (figuur 2.20).
Vanuit deze structuren gaat de prikkel over naar de arbeidsmusculatuur. In alle
cellen van deze pacemaker weefsel vindt een prikkelvorming plaats. De snelheid van de
geleiding van de prikkel neemt toe van het atrium naar het ventrikel. In de AV knoop
figuur 2.21: verschillen in rust- en actiepotentiaal in het automatisch
weefsel en arbeidsmyocard.
47
2. Rol van ionenkanalen: elektrogenese
wordt de geleiding van de prikkel het meest vertraagd (Adam-Stokes syncope t.g.v.
optreden van plotse blokkering van het geleidingssysteem tussen atria en kamers).
IC a ,
L
IK
-5 0 m V
I C a ,T
-6 5 m V
If
IK
IC a ,
L
IC a ,
T
If
figuur 2.23:
mechanismen van
het ontstaan voor de
diastolische
depolarisatie:
activering If (HCN),
ICa,T (α1H, α1G),
afremming IK
(GIRK?). De AP
wordt geïnduceerd
door activering van
het L-type Ca2+
kanaal (a1C), de
repolarisatie door
een spanningsafhankelijke K+
kanaal.
Meest belangrijke mechanismen voor het ontstaan van de diastolische
depolarization zijn: activatie van HCN kanalen (If), activatie T-type Ca2+ kanalen,
afremming van een K+ conductantie (GIRK), maar ook activering van de Na/Ca
uitwisselaar (zie voor details cursustekst “transparanten).
2.5.2.2 Impulsvorming in het hart
Cellen van de SA knoop vertonen een spontane elektrische activiteit. Pacemaker
cellen hebben geen constante rustpotentiaal. In de rustfase van het hart treedt een
“diastolische depolarisatie” op. Deze gaat over in een snelle depolarisatie. De frequentie
van de prikkelvorming neemt af van het atrium tot het Purkinje netwerk. Cellen van het
arbeidmyocard hebben een constante rustpotentiaal. De steilheid van de diastolische
depolarisatie bepaalt hoe snel de drempel voor de snelle depolarisatie bereikt wordt. Ze is
het grootst in de SA knoop, het minst in het Purkinje netwerk.
48
2. Rol van ionenkanalen: elektrogenese
De frequentie van de snelste ontlading in de SA knoop bepaalt dus de
slagfrequentie van het hart (dominante of primaire pacemakercellen). De steilheid van
diastolische depolarisatie, de maximale diastolische potentiaal en de drempel potentiaal
bepalen de slagfrequentie van het hart (figuren 2.21, 2.22, een actiepotentialen in het
hart). Cellen met een tragere ontlading kunnen de rol van de dominante pacemaker bij het
wegvallen van de primaire gangmaker overnemen (secundaire pacemakercellen,
pacemakerverschuiving).
kanalen
Na+ kanaal, gen SCN5A
α1C (L-type)
Kv1.2,1.4,1.5
Kv4.2, 4.3
KCNQ1+KCNE1
Kir2.1, Kir3.1
Figuur 2.24: mechanisme van het ontstaan van een hart (ventriculair)n actiepotentiaal. De
stromen door verschillende kanalen worden aangeduid en hun relatie tot de actiepotentiaal.
KV zijn snel inactiverende K+ kanalen, KCNQ1 en KCNE1 vormen het kanaal-complex
voor de “delayed” rectifier.
Een depolarisatie ontstaat a) door bewegen van positieve ladingen van buiten naar
binnen (b.v. activering van calcium kanalen), b) door afname van de beweging van
positieve ladingen van binnen naar buiten (b.v. deactivering van kalium kanalen).
Verantwoordelijk voor de diastolische depolarisatie zijn: a) afname van een kalium
conductantie (IK), b) activering van T-type calcium kanalen (ICa,T) en later L-type
calcium kanalen (ICa,L). T-type kanalen worden bij een meer negatieve potentiaal
geactiveerd dan L-type kanalen, c) activering van een cationen kanaal door hyper- of
repolarisatie (If ). De actiepotentiaal (AP) is in de arbeidsmusculatuur verschillend van
deze in de pacemakercellen, Purkinje cellen en myocardcellen. Aan de overgang tussen
Purkinje netwerk en arbeidsmusculatuur duurt de actiepotentiaal het langst
49
2. Rol van ionenkanalen: elektrogenese
(veiligheidsmechanisme, premature excitatie wordt hier door de lange refractaire periode
geblokkeerd). De functie van de arbeidsmyocardcellen is de initiatie van de
hartcontractie.
Volgende mechanismen veroorzaken de actiepotentiaal in de arbeidsmusculatuur:
a) snelle depolarisatie door activering van Na+ kanalen, b) plateau: afname van een K+
conductantie ( K+ inward rectifier, IRK van Kir2 familie) en activering van L-type
calcium kanalen (calcium influx is noodzakelijk voor het aktiveren van de contractie), c)
repolarisatie: activering van K+ kanalen (delayed rectifier, IK) en toename van een
kaliumconductantie, IRK.
2.5.3
Gladde spiercellen.
De elektrische activiteit in gladde spier kan tonisch of fasisch zijn (figuur 25). Tonische
activiteit houdt in dat de membraanpotentiaal onder invloed van stimuli graduele
wijzigingen, hetzij in depolariserende hetzij in hyperpolariserende richting, ondergaat. Er
treden dus geen plotse, transiënte veranderingen op zoals bij een actiepotentiaal.
Tonische activiteit treft men aan in bronchiale gladde spier en in de meeste vasculaire
gladde spieren (uitzondering: vena porta).
Fasische activiteit impliceert dat er transiënte veranderingen in de
membraanpotentiaal optreden. Men onderscheidt 2 types van fasische activiteit: (i)
Actiepotentiaal. De depolarisering wordt door een activering van L-type
A.
-30
agonist
-50
B.
0
-50
C.
-30
-60
figuur 2.25. Electrische activiteit in de gladde spier. (A) Tonische activiteit: graduele
depolarisering onder invloed van een agonist. (B) en (C) Fasische activiteit onder vorm
van een actiepotentiaal (B) of een trage golf (C).
50
2. Rol van ionenkanalen: elektrogenese
spanningsafhankelijke Ca2+ kanalen veroorzaakt. Dergelijke actiepotentialen treft men
aan in gladde spiercellen van de uterus en in de longitudinale, intestinale gladde spier. (ii)
Trage golf. Dit zijn transiënte wijzigingen in de membraanpotentiaal die gekenmerkt zijn
door een langdurig (verschillende seconden) plateau dat schommelt tussen de -30 en -40
mV. Tijdens dit plateau stroomt er Ca2+ naar binnen via L-type Ca2+ kanalen. Trage
golven komen voor in de circulaire spierlaag van het maagdarmstelsel. Enkele gladde
spiercellen zijn automatisch actief. De actiepotentiaal wordt hier gekenmerkt door een
depolarisatiefase vergelijkbaar met die in een sinusknoopcel (influx van Ca2+ ionen). In
de meeste cellen volgt de repolarisatie snel op de depolarisatie (vas deferens,
myometrium, colon,...), maar in sommige cellen vinden we ook actiepotentialen met een
uitgesproken plateau (maag, ureter,...). De rustpotentiaal is eerder gering (-50 mV). Vele
gladde spiercellen worden gekenmerkt door trage oscillaties. Figuur 2.26 toont
actiepotentialen in een gladde vasculaire spiercel die automatisch ontstaan. De
depolarisatie gebeurt hier door activatie van L-type Ca2+ kanalen. Daardoor wordt
intracellulair Ca2+ verhoogt. Deze verhoging activeert een Ca2+-gevoelig K+ kanaal,
hetgeen tot repolarisatie en hyperpolarisatie leidt. Afname van de Ca2+-influx vermindert
gK(Ca). ). Daardoor ontstaat een depolarisatie die weer spannings-gestuurde Ca2+ kanalen
opent.
51
2. Rol van ionenkanalen: elektrogenese
figuur 2.26: Voorbeeld voor automatische (pacemaker)
actiepotentialen in een gladde spiercel van een bloedvat. E M
is de membraanpotentiaal, ICa een L-type Ca 2+ -kanaal,
∆Ca 2+ is de verandering in de intracellulaire Ca 2+
concentratie, I K,Ca de Ca 2+ -geactiveerde K + stroom.
52
2. Rol van ionenkanalen: elektrogenese
2.5.4 Modulatie van de actiepotentialen.
2.5.3.1 Modulatie door vegetatieve transmitter en neurotransmitter
figuur 2.27: Effect van orthosympatische prikkeling en parasympathische
prikkeling op de actiepotentiaal van hartcellen. * geeft de gemoduleerde
actiepotentiaal weer.In C is ook de contractie weergegeven.
53
2. Rol van ionenkanalen: elektrogenese
Modulatie van de actiepotentiaal is enorm belangrijk voor hartspiercellen. Vanuit
vegetatieve zenuwen worden transmitters vrijgezet, zoals noradrenaline en acetylcholine.
Bij orthosympatische prikkeling van het hart wordt uit de zenuwuiteinden noradrenaline
vrijgezet. Wanneer dit inwerkt op de hartspiercellen, verhoogt de frequentie en de sterkte
van de contracties (positief chronotroop en positief inotroop effect). Bij parasympatische
prikkeling wordt uit andere zenuwen acetylcholine vrijgezet. Daardoor daalt de
slagfrekwentie van het hart en in het atrium wordt ook de contractiekracht verminderd
(negatief chronotroop en negatief inotroop effect). Noradrenaline bindt aan β-receptoren
in het plasmamembraan. Via een G proteïne wordt adenylaatcyclase geactiveerd, wat
leidt tot de synthese van cAMP. cAMP moduleert het If kanaal i.e. de activeringskurve
verschuift in de depolariserende richting en dit leidt tot een versnelling van de
diastolische depolarisatie in onder meer de sinusknoopcellen (positief chronotroop
effect). Tegelijkertijd activeert het cAMP ook het proteïne kinase A. Activering van het
proteïne kinase A leidt tot fosforylering van onder meer het Ca2+ kanaal. Het gevolg van
de fosforylering van het Ca2+ kanaal is een toename van de inwaartse Ca2+ stroom. Ca2+
ionen zijn van belang voor het ontstaan van de contractie van de hartspiercel (positief
inotroop effect). Acetylcholine bindt in het hart aan muscarinereceptoren. Eveneens via
een G proteïne wordt een K+ kanaal geactiveerd (op een rechtstreekse wijze zonder
tussenkomst van cAMP). Door deze toename van gK hyperpolariseert de cel en dit leidt
tot een vertraging van de diastolische depolarisatie in onder meer de sinusknoopcellen
(negatief chronotroop effect). De muscarine receptoren zijn verder, via een ander G
proteïne, negatief gekoppeld aan het adenylaatcyclase (zie werking van noradrenaline;
negatief inotroop effect, figuur 2.27).
2.5.3.2 Modulatie door metabolisme
Metabolische inhibitie heeft als gevolg a) verhoogde intracellulaire Ca2+
concentratie, b) het dalen van de intracellulaire ATP concentratie.
Wanneer [Ca2+]i stijgt, dan kunnen Ca2+-afhankelijke K+ en Cl- kanalen
geactiveerd worden. Meestal is er een inkorting van de AP het gevolg. In weefsel met gap
juncties zal de elektrische koppeling tussen de cellen afnemen. Door versterkte activering
van de Ca2+ sekwestratie (ATPasen) daalt de ATP concentratie verder.
Dalende ATP concentratie activeert de ATP- afhankelijke K+ stroom (inkorting
van de AP). De electrogene Na+ /K+ pomp wordt afgeremd. Dus daalt de intracellulaire
54
2. Rol van ionenkanalen: elektrogenese
K+ concentratie, [Na+]i stijgt. Door inhibitie van de electrogene pomp wordt de
membraanpotentiaal verminderd (wordt minder negatief).
2.5.3.3 Refractaire periode
Een cel waarin, door een prikkel, een actiepotentiaal ontstaat wordt voor een korte
daaropvolgende periode (tussen 0.4 en 2 ms) onprikkelbaar (absoluut refractair). Daarop
volgt een periode waarin de cel slechts kan geprikkeld worden met een grotere dan de
oorspronkelijke prikkelintensiteit (relatief refractaire periode).
De verklaring van deze verschijnselen ligt in het traag herstel van inactivering van
de snelle Na+ kanalen: is het Na+ kanaal in de geïnactiveerde toestand, i, dan kan door
een depolarisatie geen opengaan van het kanaal uitgelokt worden en dus geen AP
ontstaan. Wanneer enkele maar nog niet alle kanalen weer van de geïnactiveerde toestand
naar de gesloten, niet-geïnactiveerde toestand geraakt zijn, dan kan met een verhoogde
prikkelintenstiteit een nieuwe AP ontstaan. Deze periode volgt de absoluut refraktaire
toestand op en wordt “relatieve refraktariteit” genoemd. De AP is in de relatief refraktaire
periode korter en heeft een minder steile helling.
2.5.3.4 Repetitieve ontlading van actiepotentialen
Wanneer het celmembraan van een axon blijvend boven de drempel
gedepolariseerd wordt, ontstaat er slechts één actiepotentiaal. Bij depolarisatie van het
cellichaam van een zenuw, die het gevolg is van meerdere synaptische potentialen,
ontstaat een reeks (een trein) van actiepotentialen. Naarmate de depolarisatie groter is
neemt de frequentie van de actiepotentialen (aantal actiepotentialen per seconde) toe. Dit
gedrag staat gekend als repetitieve ontlading van actiepotentialen. Het laat een alles-ofniets verschijnsel als een actiepotentiaal toch toe informatie omtrent de intensiteit van de
prikkeling door te sturen; overgang van amplitudemodulatie (AM) naar
frequentiemodulatie (FM).
2.5.3.5 Adaptatie
Bij aanhoudende prikkeling van het cellichaam van een zenuw, ontstaat een trein
van actiepotentialen. Wanneer de frequentie van actiepotentialen in de trein afneemt
spreekt men van adaptatie. De graad van adaptatie wordt bepaald door de mate en de
55
2. Rol van ionenkanalen: elektrogenese
snelheid waarmee de snelle Na+ kanalen herstellen van inactivering. Adaptatie ontstaat
als nagenoeg alle Na+ kanalen rechtstreeks van o na I overgaan (zie B.3.2.).
2.5.3.6 Invloed van extracellulaire Ca2+ op de prikkelbaarheid.
De polaire koppen van een aantal fosfolipiden in het celmembraan zijn negatief
geladen. Ook de membraanproteïnen dragen bij neutrale pH overwegend negatieve
ladingen. De aanwezigheid van deze zgn. gefixeerde negatieve ladingen beïnvloedt de
activeringspoortjes van de potentiaal-gestuurde kanalen. Extracellulaire Ca2+ ionen
zullen, vooral omdat ze twee positieve ladingen dragen, een deel van de gefixeerde
negatieve ladingen wegnemen. Op deze wijze beïnvloedt Ca2+ het transmembranair
potentiaalverschil en dus ook de activeringsdrempel van de kanalen (zie figuur 16,
hoofdstuk 1). Wanneer de extracellulaire Ca2+ concentratie daalt, wordt de
activeringsdrempel lager en de cel dus meer prikkelbaar. Bij hyperventilatie (sneller en/of
dieper ademen dan fysiologisch vereist) daalt de CO2 (= zuur) concentratie in het bloed
(pH stijgt) en daardoor neemt de vrije Ca2+ concentratie in het bloed en de interstitiële
vloeistof af. Deze afname wordt veroorzaakt door de competitieve binding van H+ en
Ca2+ aan serumproteïnes: daalt de H+ concentratie kunnen dus meer Ca2+ gebonden
worden. Spieren en zenuwen van personen die hyperventileren worden daardoor
hyperexciteerbaar (convulsies = stuipen).
2.5.3.7 Invloed van farmaca op de prikkelbaarheid
Stoffen die kanalen in zenuwen en spieren blokkeren maken deze onprikkelbaar.
Het zijn (locale) anaesthetica (vb. lidocaine). Tetrodotoxin, het gif van de japanse
koffervis (Tetrodon) en saxitoxin blokkeren snelle Na+ kanalen. Ze binden aan de
selectiviteitsfilter van de Na+ kanalen en werken daardoor selectief op de Na+ kanalen.
Veel neurotoxines zijn lipide-oplosbare stoffen die de gating van de Na+ kanalen
beïnvloeden zodat de kanalen zelfs al openen bij de rustpotentiaal. Voorbeelden zijn de
plant alkaloïden aconitine, veratridine en pyrethrine (een natuurlijk insecticide),
batrachotoxin - een gif van een Columbiaanse kikker - en het organochloor insecticide
DDT. Stoffen die Ca2+ kanalen blokkeren noemt men Ca2+ antagonisten. Ze kunnen soms
voor het verlagen van de bloeddruk aangewend worden. Vele ander stoffen zijn gekend
die de activeerbaaarheid van Ca2+ kanalen bepalen. Door deze stoffen werd ook de
identifikatie van verschillende typen van Ca2+ kanalen mogelijk. Dihydropyridine
blokkeert L- en N-type Ca2+ kanalen. Het ω-conotoxine (van de Conus-slak) blokkerd Ntype kanalen. Het gif van een spin (funnel web spin) blokkeert P-type kanalen.
56
2. Rol van ionenkanalen: elektrogenese
Bepaalde giffen van schorpioenen (charbydotoxine) en bijen (apamine) blokkeren
Ca -afhankelijke K+ kanalen. Andere stoffen - die ook orale antidiabetika zijn inhiberen ATP-afhankelijke K+ kanalen.
2+
2.6
Prikkelvoortgeleiding
2.6.1 Passieve voortgeleiding
Als een potentiaalverandering (hyperpolarizatie of depolarisatie waarbij de
drempel niet overschreden wordt) geïnitieerd wordt door het lokaal injecteren van een
electrische stroom, dan wordt op een bepaalde afstand van deze injectieplaats een
potentiaalverandering gemeten die traag stijgt (figuur 2.28). Deze potentiaalverandering
zonder de activering van een AP noemt men “electrotonus”. Omdat het tijdverloop van de
electrotonus door de membraanstructuur gedefinieerd is (capaciteit CM die parallel met de
membraanweerstand RM ligt) wordt de potentiaalverandering weergegeven door
Vt = Vmax ∗ (1 − e − t /τ )
met als maximale potentiaalverandering Vmax, Vt is de electrotonus op de tijd t. τ
is de tijdsconstante van de electrotonus die bepaald wordt door
τ = CM ∗ RM
τ is de tijd voor het bereiken van 63% van Vmax en wordt membraantijdsconstante
genoemd.
57
2. Rol van ionenkanalen: elektrogenese
figuur 2.28: Voorbeeld voor de afname van tijdverloop van het ontstaan van de
electrotonus in een zenuw van een motoneuron. ∆V is de electrotonus gemeten op
verschillende afstanden van de stroominjectie, Io.
Zoals figuur 2.28 aantoont neemt de electrotonus ook met de afstand van de
injectieplaats af. Deze potentiaalafname komt tot stand omdat een deel van de stroom uit
de cel weglekt (kortsluitstroom) doorheen het celmembraan dat als een niet-ideale
isolator moet beschouwd worden. Hoe hoger de weerstand van de isolator (het
membraan) hoe verder de depolarisatie zich zal uitstrekken. Kwantitatief wordt dit
weergegeven door:
Vx = Vo ∗ e − x / λ
met
λ=
Rm
Ri + Ro
waarbij V0 de oorspronkelijke potentiaalverandering aan de injectieplaats, Io,
voorstelt, Vx de potentiaal op afstand x, λ de lengteconstante, Rm, Ri, en Ro de weerstand
van het membraan van het intracellulair midden en van het extracellulair midden. De
lengteconstante λ geeft de afstand waar de potentiaal gedaald is tot 1/e (d.i. ongeveer
58
2. Rol van ionenkanalen: elektrogenese
37%; e = 2.718) van zijn oorspronkelijke waarde. Voor een spier of zenuwvezel bedraagt
de lengteconstante minder dan 1 mm. Aangezien dikkere vezels een geringere
intracellulaire weerstand bezitten, zal λ toenemen. De depolarisatie kan zich verder
uitbreiden en de voortplantingssnelheid zal dus toenemen met de diameter van de zenuw.
type
Aα
Aß
Aγ
B
C
ERLANGER en GASSER
funktie
gemiddelde doorsnede
(µm)
motorisch na extrafusale
15
spiervezels
extra-en intrafusale
8
spiervezels
motorisch na spierspoel
5
preganglionaire
3
orthosymapathische
vezels
nocisensoren
gemiddelde
voortleidingssnelheid (m/s)
100 (70-120)
50 (30 - 70)
20 (12-30)
7 (3-15)
Op basis van de voortgeleidingssnelheid worden zenuwen geklassificeerd. Deze
classificatie gebeurt volgens 2 schema’s (Erlanger en Gasser, vooral voor motorische
vezels, efferente innervatie gebruikt, aan de voorwortels van het ruggemerg, Lloyd en
Hunt, meest voor afferente innervatie, sensorische vezels gebruikt, aan de achterwortel
van het ruggenmerg).
2.6.2 Actieve voortgeleiding
Wanneer een depolarisatie de drempel overschrijdt, dan zal een actiepotentiaal
ontstaan. Door een voortdurende herhaling van kortsluitstromen zal deze actiepotentiaal
zich uitbreiden over de ganse vezel. Door het bestaan van de refractaire periode wordt de
AP slechts in één richting voortgeleid. Een zenuw wordt hier door nietspanningsafhankelijke kanalen (bv. ligand-gestuurde kanalen) gestimuleerd. Deze
stimulus activeert Na+ kanalen en dus een AP. K+ kanalen veroorzaken de repolarisatie.
Door het sluiten van de inactiveringspoort kan de depolarisatie niet meer terug geleid
worden en moet dus de volgende nog in de rust-toestand bestaande Na+ kanalen (rechts)
activeren.
59
2. Rol van ionenkanalen: elektrogenese
type
spier huid
Ia
(Aα)
Ib
doorsnede
[µm]
13
10
II
(Aß)
9
III
(Aδ)
3
IV (C)
1
HUNT en LlOYD
voortgeleiding
sensor spier
snelheid [m/s]
75 (70-120)
spierspoel
60 (40-80)
pezen en
gewrichtsligame
nten
55 (25-70)
spierspoel,
gewrichtskapsel
11 (10 - 25)
Pacini
lichaampjes
1
nocisensoren in
spieren,
gewrichten
sensor huid
tast, kinestesie
druk, temperatuur,
pijn
pijn, druk,
temperatuur,
postganglionaire
vegetatieve vezels
2.6.3 Saltatorische voortgeleiding
Bij de vertebraten wordt in zenuwen waar het nodig is een snelle prikkelgeleiding
verkregen door de gedeeltelijke electrische isolering van het axon. Alle zenuwen zijn
omhuld met steuncellen. Bij sommige axonen van vertebraten is er, door toedoen van
deze cellen, rond de vezel een electrisch isolerende laag aangebracht die bestaat uit dicht
opeengewikkelde lagen van een gespecialiseerde vorm van plasmamembranen. Men
noemt dit de myelineschede en ze wordt gevormd door Schwanncellen in perifere axonen
en door oligodendrocyten in axonen van het centraal zenuwstelsel.
Op regelmatige afstanden is deze myelineschede onderbroken door de knopen van
Ranvier (figuur 2.29). De weerstand t.h.v. de Ranvier knoop is ongeveer 10.000 maal
kleiner dan in het internodium omdat alleen hier kanalen en pompen in een grote
hoeveelheid aanwezig zijn. De actiepotentiaal springt dus van de ene knoop naar de
volgende. Deze vorm van voortgeleiding wordt dus saltatorisch genoemd. Uit de
formules voor de lengte en de tijdskonstante leiden we af dat de lengtekonstante en de
prikkelgeleidingssnelheid in gemyeliniseerde vezels veel groter zal zijn dan in nietgemyeliniserde vezels van dezelfde diameter.
60
2. Rol van ionenkanalen: elektrogenese
figuur 2.29: Gemyeliniseerde zenuwen. Het axon A wordt door Schwanncellen
omgeven die myeline synthetiseren. Deze gespecialiseerde Schwanncellen vormen
een spiraalvormige laag om het axon. Deze structuur is niet aanwezig in niet
gemyelineseerde zenuwen hoewel deze ook door Schwanncellen omgeven zijn.
De voortgeleiding in een gemyeliniseerde zenuw met Ranvier-knopen wordt in
figuur 2.30 getoond. De actiepotentiaal ontstaat alleen in de Ranvier-knoop en springt dus
van knoop tot knoop.
61
2. Rol van ionenkanalen: elektrogenese
figuur 2.30: actiepotentialen worden met een extracellulaire meettechniek
langs een zenuw geregistreerd. Indicator voor een AP is de potentiaalspits.
Dat alleen in de Ranvierknoop een AP ontstaat, wordt duidelijk door het
niet verschuiven van de AP-spits langs het internodium.
62
2. Rol van ionenkanalen: elektrogenese
myeline
Na+ kanalen
knoop 1
lekstromen
knoop 2
knoop 3
membraanpootential
aan Ranvier knoop 3
AP normaal
normaal myeline
AP vertraagd
partieel defect
geen AP
volledige defect: blok
drempel
tijd
figuur 2.31: verklaring van defecten in de impulsvoortgeleiding in zenuwen met een defecte myelinelaag.
Multiple sclerose (centraal zenuwstelsel) en het syndroom van Guillain-Barré
(perifeer zenuwstelsel) zijn twee neuronale aandoeningen gekenmerkt door het verlies
van myeline met als gevolg een vertraging of zelfs het volledig wegvallen van de
geleiding. In een gemyeliniseerde zenuwvezel is de aan de Ranvier knoop aankomende
impuls 5 tot 7 keer groter dan noodzakelijk om een actiepotentiaal te kunnen activeren
(veiligheidsfactor). Demyelinisatie vermindert deze veiligheid. Door vernietiging van de
myelinelaag wordt de lekstroom groter. De deporalisatie van de volgende Ranvier knoop
wordt eerst vertraagd. Later wordt een volledige blokkering veroorzaakt (figuur 2.31).
2.6.4 Voortgeleiding in hartspiercellen en gladde spieren
Het myocardium kan gezien worden als een functioneel syncytium (functioneel
als één enkele grote cel). Dit is een gevolg van het voorkomen van gap junkties. De
intracellulaire weerstand is door het bestaan van cel-cel connecties in dezelfde
grootteorde als de extracellulaire weerstand. Wanneer er celbeschadiging optreedt in een
zone van het hart (myocardinfarct) zal in de beschadigde cellen [Ca2+]i toenemen, de H+
concentratie stijgen (daling van de pH) en ATP afnemen. Daardoor sluiten de gap
63
2. Rol van ionenkanalen: elektrogenese
juncties af. Op deze wijze worden de beschadigde cellen automatisch afgesloten van het
gezonde weefsel. Door verslechteren van de cel-cel koppeling in het hartweefsel wordt de
impulsvoortgeleiding dramatisch beperkt. Dat veroorzaakt impulsgeleidingstoringen,
aritmiëen, re-entry fenomeen etc.
Impulsvoortgeleiding in skeletspieren wordt vanuit de motorische eindplaat
geactiveerd. Vanuit deze eindplaat wordt de actiepotentiaal in alle richtingen voortgeleid.
In gladde spieren bestaan dikwijls gap juncties en dus een syncytiële
voortgeleiding. Structuur en functie zijn minder homogeen dan in hart- en skeletspieren.
Enkele types van gladde spieren zijn prikkelbaar en kunnen zelfs automatisch actief zijn.
Andere zijn niet prikkelbaar.
64
Download