Regeltechniek van het motormanagementsysteem

advertisement
Regeltechniek van het
motormanagementsysteem
E. Gernaat, ISBN 978-90-808907-9-4
1
De regeleenheid
Centraal staat hier het motormanagementsysteem maar ook vele andere autosystemen maken gebruik van een digitaal stuurapparaat of besturingscomputer.
We spreken dan over de digitale regeltechniek. Vroeger werden ook analoge
regelapparaten toegepast waarvan het L-Jetronic systeem het bekendste voorbeeld is. We zouden gemakshalve de computers in twee catagoriëen kunnen
verdelen nl. de procesbesturende computer en de personal computer (PC). De
PC is in staat om verschillende werkzaamheden (programma’s) uit te voeren
terwijl de procescomputer ontworpen is voor één taak. De principiële werking
van beide systemen is gelijk. Voor een computer is de elektronica-schakeling
zelf (de hardware) niet voldoende. Er is een programma (software) nodig om
de computer de gewenste taak te laten uitvoeren. Een computer werkt op basis van ”ja/nee”beslissingen. Het is een logische 1 (ja) of een logische 0 (nee).
Voorbeeld: Draait de motor? Zo ja, voorzie de benzinepomp van spanning. Zo
nee, verbreek de elektrische verbinding naar de benzinepomp. De processor die
gebruikt wordt voor het regelen van een autotechnisch systeem bevat meestal
zoveel extra ingebouwde functieblokken dat de chip een complete computer
wordt. We spreken dan van controllers. Een controller kan worden beschouwd
als een single-chip computer met gespecialiseerde besturende taken. Een procescontroller bestaat veelal uit:
•
•
•
•
•
•
•
de eigenlijke processor als kern (core);
diverse geheugens;
analoog / digitaal omzetter (ADC);
timers;
seriële interfaces;
CAN-bus interface;
PWM-outputs (voor duty-cycle regeling);
Fig. 1 laat de functieblokken zien van een nog steeds toegepaste maar inmiddels
wat verouderde microcontroller van Motorola, de 68HC11.
1
Figuur 1: De functieblokken en de poorten van de 68HC11 microcontroller. De verbinding met
de buitenwereld geschiedt door poorten (P) hier aangegeven met PA, PB, PC etc.
2
Interface schakelingen
Sensoren meten per definitie natuurkundige of scheikundige grootheden en zetten deze (meestal) om in een analoog verlopend elektrisch signaal. Deze signalen moeten worden aangepast voordat ze aan de processor kunnen worden
aangeboden. Aan de andere kant van de computer bevinden zich de actuatoren. Dit zijn vaak inductieve circuits die veel stroom opnemen. De benodigde
aanpassings-schakelingen, zowel voor de sensoren als actuatoren, noemt men
interface-schakelingen. Deze kunnen zich bijv. als losse eindtrappen in de regeleenheid bevinden. Veel energie in de autotechniek gaat zitten in het ontwerpen
van deze interfaceschakelingen. Fig. 2 toont ons een autotechnische procescomputer. Er zijn twee klok-kristallen duidelijk zichtbaar hetgeen wijst op twee
processoren. Acht eindtrappen bevinden zich op aluminium koelplaten. Deze
IC’s zijn tegen de koelplaten geklemd.
2.1
De werking (nogmaals)
De processor vormt het hart van de computer. Bij de fabricage van de processor zijn een aantal instructies ’ingebakken’. We zouden dit kunnen vergelijken
met de letters van het alfabet. De letters a t/m z zijn dan in de processor digitaal opgeslagen. In werkelijkheid zal het niet gaan om letters maar om digitale
instructies die bepaalde eenvoudige handelingen voorstellen. Wanneer we het
2
Figuur 2: Voorbeeld van een digitaal regelende besturingscomputer (stuureenheid) van een motormanagement systeem (Seat).
3
verhaal van de letters blijven volgen, kunnen we woorden maken door de verschillende letters in de juiste volgorde te plaatsen. En zo kunnen we verder
redeneren. Door de woorden in de juiste volgorde te plaatsen ontstaan zinnen,
en de juiste zinnen maken het verhaal. Dit laatste, het verhaal dus, is te vergelijken met een computerprogramma. Een programmeur zet in zijn programma,
de instructies die de processor kent, in de juiste volgorde. Zo’n door een programmeur gemaakt programma wordt door de fabrikant in een ROM-achtig geheugen (Flash-ROM) geplaatst. Wanneer de computer wordt opgestart (de klok
begint te ’tikken’) worden op de maat van de klok de instructies één voor één
uit het geheugen gehaald en door de processor uitgevoerd. Is het programma
ten einde dan begint het weer opnieuw. Soms heeft een computerprogramma
een aantal gegevens (data) nodig. Ook deze data (bijv. de ontstekingstijdstippen) kunnen in een ROM-geheugen worden opgeslagen. Het RAM-geheugen
speelt bij deze autoprocessoren meestal een minder grote rol. Een klein RAMgeheugen is noodzakelijk voor het tijdelijk opslaan van gegevens en (berekende) tussenwaarden. Ook voor de interne afwikkeling van een programma is een
RAM-geheugen noodzakelijk. De snelheid waarmee zo’n programma wordt uitgevoerd wordt uitgedrukt in het aantal MIPS (Miljoen instructies per seconde).
Het optellen van twee getallen is bijv. zo’n instructie. 100 MIPS is momenteel
gebruikelijk.
3
Motormanagementsysteem als regelsysteem
Het motormanagement-systeem van een mengselmotor dient ervoor te zorgen
dat onder alle bedrijfsomstandigheden de verbranding van het mengsel op het
juiste tijdstip (ontsteking) plaatsvindt en dat de mengselsamenstelling optimaal
is ten aanzien van zuinigheid, vermogen en uitlaatgassamenstelling. Alvorens
de computer kan gaan regelen moet er eerst worden vastgesteld in welke bedrijfsomstandigheid de auto zich bevindt. Elke bedrijfsomstandigheid heeft namelijk zijn aparte regeltechnische eisen en kenmerken. We onderscheiden, als
voorbeeld, de volgende bedrijfsomstandigheden met de bijbehorende (globaal
aangenomen) kenmerken.
•
Koude start −→ mengsel rijk, ontsteking laat;
•
Warme start −→ mengsel minder rijk dan bij koude start
•
Koud stationair draaien −→ mengsel rijk, toerental verhoogd;
•
Warm stationair draaien −→ mengsel minder rijk, toerental laag;
•
Deellast draaien −→ mengsel correct, toerental 1500-4000, ontstekingstijdstip volgens programma, lambda-regeling;
•
Vollast draaien −→ mengsel rijk, belasting (toerental) hoog;
•
Acceleratie −→ mengsel rijk, ontsteking verlaat;
•
Deceleratie −→ mengsel arm, ontsteking vervroegd.
Het belangrijkste is ongetwijfeld het deellastrijden waarbij zuinigheid en
milieu centraal staan. Op het moment van ’contact omdraaien’ zal de
4
motormanagement-computer aan de hand van ja/nee beslissingen beginnen
met de bedrijfsmode te bepalen. In de verdere programma-afwikkeling zal de
computer steeds controleren of er nog in de juiste bedrijfsmode wordt gewerkt.
Fig. 3 en 4 geven voorbeelden op welke wijze dat gebeurt. Voor het inzicht
maakt men gebruik van een stroomdiagram of flowchart. Met pijlen is aangegeven op welke wijze voor de mode ’warm stationair draaien’ (fig. 3) en voor
’deellast draaien’ (fig.4) wordt gekozen.
Figuur 3: Door middel van ja/ nee beslissingen selecteert de motormanagement-computer de
’stationair warmdraai mode’ .
3.1
Eigenlijke procesregeling
In het blokje ’stationair warm draaien’ van fig. 3 wordt door het programma
het motortoerental stabiel gehouden. Zo’n programma bestaat uit een aantal
instructies die dan een regeltechnisch programma vormen. Om zo’n programma te kunnen maken dient men op de hoogte te zijn van de regeltechnische
beginselen. De regeltechniek kan in functieblokken worden weergegeven (fig.
5). We zien in fig. 5 een aantal symbolen en begrippen die regeltechnisch veel,
maar autotechnisch weinig worden gebruikt. Het blokje aangeduid als ’regelaar’
is het motormanagement-systeem in de stationaire-regelmode. Het ’proces’ is
onze verbrandingsmotor waarvan het toerental moet worden geregeld. De sensor is de toerentalsensor en de actuator is de stationaire-regelklep. We zien een
5
Figuur 4: Door middel van ja/nee beslissingen selecteert de motormanagement-computer de
’deellast mode’.
Figuur 5: Een blokschema van een regelkring
6
pijl met de letter ’w’ bij de regelaar staan. De ’w’ staat voor de gewenste waarde en bedraagt bijv. 800 t/min. Dit is het gewenste stationaire toerental. Het
gewenste stationaire toerental is in het geheugen van de computer getalsmatig
opgeslagen. Het gewenste toerental kan echter afhankelijk van de motortemperatuur variëren. De letter ’x’ komt van de toerentalsensor en stelt het gemeten
of het werkelijke toerental van de motor voor. De letter ’y’ is de stuurwaarde.
De stuurwaarde wordt vertaald in een elektrisch signaal waarmee de actuator,
in dit geval de stationaire regelklep, wordt aangestuurd. De ’z’ stelt de storing
voor. Een regeltechnische storing is echter heel wat anders dan een autotechnische storing. In de regeltechniek verstaat men onder een storing, een invloed
van buitenaf die het regelproces, in dit geval het handhaven van het stationaire toerental, verstoord. Voorbeeld: Het inschakelen van de airco-installatie
belast de stationair draaiende motor waardoor het toerental zal gaan dalen.
De airco-installatie is dan een storende factor op het regelproces. In het hokje
van de regelaar, de motormanagement-computer, staat ’e = w - x’. Dit betekent dat de computer eerst de fout e (= error) uitrekent tussen het gewenste
en het werkelijke toerental. Zo’n fout kan positief of negatief uitvallen. Immers
het motortoerental kan 1000 t/min. of 600 t/min. zijn. In beide gevallen is er,
uitgaande van een gewenst stationair toerental van 800 t/min., een fout van
200 t/min. De fout moet vervolgens weggeregeld worden door de stationaire
regelklep verder open te sturen als de fout positief is of in de richting van dicht
te sturen als de fout negatief is. De stuurwaarde moet worden aangepast. Een
grotere fout betekent meer sturing van de klep. Er bestaat dan ook een relatie
tussen de grootte van de fout en de stuurwaarde op de klep, in formule vorm: y
= f (e) of anders gezegd de grootte van de stuurwaarde y hangt af van de grootte van de fout ’e’. Hoe die relatie precies ligt wordt bepaald door de gekozen
regelstrategie. Men onderscheidt (voornamelijk) de volgende regelstrategiën:
•
•
•
•
•
•
aan-uit regeling;
kenveld-regeling;
P-regeling;
I-regeling;
D-regeling;
combinatie van de P, I en D regeling geeft een zgn. PID-regeling.
Er zijn meer regelsystemen, waarvan bijv. de fuzzy-regeling steeds meer bekendheid geniet. De gekozen regelstrategie is echter niets anders dan een bepaalde regelformule of methode om de fout om te zetten in de stuurwaarde.
Voor welke regelmethodiek wordt gekozen hangt in sterke mate van het te regelen proces af. In de regeltechniek wordt verder nog onderscheid gemaakt
tussen regelen en sturen. In ons voorbeeld is er sprake van regelen omdat de
gemeten waarde weer teruggekoppeld wordt naar de computer. Is dat niet het
geval dan spreken we van sturen. De ’oude’ carburateur bijv. was een voorbeeld
van mengsel’sturing’. Aan de voorbijtrekkende lucht werd in relatie tot de optredende onderdruk benzine toegevoegd en dan hoopten we maar dat de mengsel7
samenstelling correct was. Er was echter geen controle op. De proces-computer
dient in eerste instantie de bedrijfsmode vast te stellen. Is de bedrijfsmode eenmaal gekozen dan moet het betreffende regelprogramma worden uitgevoerd.
Hiervoor staan de genoemde regelprincipes tot onze beschikking.
3.2
Aan-uitregeling
De aan-uit regeling is betrekkelijk eenvoudig. Dit zou -in het voorbeeld van het
constant houden van het stationaire toerental- betekenen dat wanneer het motortoerental te hoog is dat we de regelklep geheel dicht zetten en dat wanneer
het toerental te laag is dat we de klep geheel open zetten. Voor het regelen
van het stationair-toerental zal deze methode niet mogelijk zijn omdat de motor te snel reageert op een (grote) verandering van de stuurwaarde. Voor een
verwarmingsinstallatie (CV-ketel) is dit echter een veel toegepaste regelmogelijkheid omdat het opwarmen en afkoelen van een woonruimte een langzaam
verlopend proces is.
3.3
Kenveld-regeling
Een kenveld-, misschien beter een referentieveld-, regeling is ook betrekkelijk
eenvoudig te verklaren. Het gaat dan om een procesregeling waarbij het te gecompliceerd is om met behulp van een berekening tot een nieuwe stuurwaarde te komen. Noodgedwongen zoekt men dan aan de hand van de fout of de
sensorwaarden de bijhorende stuurwaarden in een tabel op. Zo’n kenveld (regeling) komt dan ook proefondervindelijk tot stand. Een goed voorbeeld van
kenveld-sturing (dus geen regeling) zijn de ontstekingstijdstippen. Het is nl.
niet goed mogelijk om de ontstekingstijdstippen te berekenen uit de motorbelasting en het toerental. Er blijft dan niets anders over om de stuurwaarden uit
een tabel te halen. Nadat de meest efficiënte ontstekingstijdstippen op een vermogensbank proefondervindelijk zijn vastgesteld worden ze vervolgens in het
geheugen van de computer opgeslagen. In de technische informatie vinden we
deze tabellen weergegeven in de vorm van fraaie driedimensionale-grafieken
(fig. 6).
3.4
P-regeling
Samen met de I-regeling vormt de P- of proportionele regeling wel de meest
bekende regelvorm. We gaan, als voorbeeld, weer uit van de stationaire
toerentalregeling. Omdat we te maken hebben met de digitale regeltechniek
moeten zowel het toerental als de stuurwaarde omgezet worden naar digitale
waarden. Ons regelgebied van bijv. 400 t/min. tot en met 1200 t/min. moet
dan voor een 8-bits computer worden omgezet in een waarde tussen de 0 en
255. We stellen het gewenste stationaire toerental op 800 t/min, dat ligt dan
keurig in het midden van ons gestelde regelgebied. Dezelfde redenering geldt
8
Figuur 6: Een ontstekingsreferentie- of kenveld. In werkelijkheid is deze grafiek van ontstekingsstuurwaarden in de vorm van een tabel (bestaande uit getallen tussen de 0 en 255) in het
computergeheugen opgeslagen.
ook voor de stuurwaarde. Maken we gebruik van een PWM-gestuurde-klep
(fig. 7, 8 en 9 dan zal vanuit de computer de stuurwaarde die variëert tussen 0
en 255 moeten worden omgezet in een duty-cycle die variëert tussen de 0 en
100 %. Een bijzonderheid bij onze gekozen P-regeling is dat de stationairklep
Figuur 7: We voeren onze stationaire toerentalregeling uit als P-regeling met behulp van een
PWM-klep (PWM = Pulse Width Modulation).
ook aangestuurd dient te worden wanneer het gewenste toerental is bereikt.
We mogen er immers vanuit gaan dat de klep voor 50 % geopend is bij het
gewenste stationaire toerental. Zo’n regeling noemt men een ’P-regeling met
voorinstelling’. Grafisch kunnen we de regeling volgens fig. 10 weergeven. In
9
Figuur 8: Voorbeeld van een PWM-gestuurde stationairklep. De computer zal een waarde tussen
de 0-255 om moeten zetten in een duty-cycle variërend tussen de 0-100 %.
Figuur 9: Het PWM-signaal. Duty-cycle 50 %: klep half open. Duty-cycle 10 %: klep vrijwel dicht.
De klep wordt door de computer aan de massa gelegd.
10
fig. 10 zien we dat het stationair toerental bereikt wordt bij een half geopende
PWM-klep. De computerwaarden zijn dan 128 voor het toerental en 128 voor
de duty-cycle waarde. Met behulp van de grafiek is het gemakkelijk te zien wat
er gaat gebeuren wanneer het stationair toerental daalt ten gevolge van een
uitwendige storing. Stel dat de airco-installatie wordt ingeschakeld en dat het
toerental terugvalt naar 600 t/min. We zien dan dat de computer de klep voor
3/4 gaat openzetten of anders gezegd de stuurwaarde van 128 wordt vergroot
naar 3/4 x 255 = 192. Omdat een dergelijke grafiek bestaat uit een rechte lijn
Figuur 10: De P-regeling van het stationaire toerental grafisch voorgesteld.
is de (reken)formule ook eenvoudig. We kunnen namelijk aan de hand van de
fout eenvoudig de nieuwe stuurwaarde berekenen. Voor de formule voor de
P-regeling met voorinstelling geldt:
y = (w-x) +y0.
Hierin is y0 de voorinstelling.
Rekenvoorbeeld voor wanneer het motortoerental daalt door het inschakelen
van de airco naar 600 t/min.:
Gegeven situatie:
w = 800 t/min. of 128
11
x = 600 t/min. of 64
y0 = half open of 128
Ingevuld in de formule wordt de nieuwe stuurwaarde:
y = (128-64) + 128 = 192
De computer zal nu het motortoerental regelen naar de gewenste waarde
van 800 t/min. Er is echter wel een probleem. Omdat de P-regeling een fout
nodig heeft om te kunnen bijregelen zal het gewenste toerental nooit geheel
worden bereikt. Immers als de fout geheel weggeregeld zou worden dan valt
de stuurwaarde weer terug op zijn oorspronkelijk waarde. Fig. 11 stelt grafisch
het P-gedrag voor. Op het tijdstip t1 wordt de regeling verstoord door een
storing z. Er ontstaat een fout (w-x). Deze wordt in 1 x weggeregeld door het
vergroten van de stuurwaarde y0 naar yn. Helaas kan de fout nooit 0 worden
omdat anders ook de stuurwaarde naar y0 terugvalt. Het gewenste toerental
wordt dan ook niet geheel gehaald. Een P-regeling voldoet dus alleen wanneer
Figuur 11: De P-regeling regelt wel snel maar kan de fout nooit geheel wegregelen.
12
we niet al te hoge eisen stellen aan de nauwkeurigheid van de gewenste
waarde.
3.5
I-regeling
De I-regeling of integrerende regeling werkt anders. Na het bepalen van de fout
(e) wordt de fout bijv. gedeeld door 10 en vervolgens wordt de stuurwaarde in
10 kleine stapjes vergroot. Het vergroten van de stuurwaarde gaat net zo lang
door totdat de gewenste waarde wordt bereikt. Een I-regeling kan dus de fout
geheel wegregelen. Zo’n I-regeling wordt door fig. 12 weergegeven. Het nadeel
Figuur 12: De I-regeling. Een I-regeling is ’langzaam’, maar regelt wel de fout geheel weg.
van de I-regeling is dat deze vrij langzaam reageert. Het ligt dus voor de hand
om de P-regeling met de I-regeling te combineren. Er ontstaat dan een zgn.
PI-regeling.
3.6
PI-regeling
De PI-regeling is een gecombineerde regeling. In eerste instante wordt de fout
weggeregeld door de ’P’. De fout die vervolgens nog overblijft wordt door het
I-gedeelte weggewerkt. Er ontstaat dan een regelaar die snelheid met nauwkeurigheid combineert. Fig. 13 geeft zo’n PI-gedrag grafisch weer. I-regelingen
worden ook toegepast wanneer we niet door berekening de grootte van de fout
kunnen bepalen. Denk bijv. aan de lambdaregeling. De klassieke lambdasensor
13
Figuur 13: De PI-regelaar. In eerste instantie wordt de fout rekenkundig snel verminderd. Om op
de gewenste waarde uit te komen wordt vervolgens een I-regeling toegepast.
14
geeft alleen maar aan of het mengsel te rijk of te arm is maar niet hoeveel het
te rijk of te arm is. Bij een te arm mengsel zullen we dus in kleine stappen
(I-gedrag) de inspuittijd moeten gaan verlengen totdat de lambdasensor constateert dat het mengsel nu te rijk is waarna de inspuittijd weer in kleine stapjes
verkort wordt.
3.7
PID-regelaar
De PID-regelaar houdt ook rekening met de grootte van de fout. Het (differentiërende) gedrag wordt alleen gebruikt om sneller op storingen in het proces te
kunnen reageren. Het D-effect wordt echter lang niet altijd toegepast.
3.8
Overige regelprincipes
De al eerder genoemde fuzzy-regeling is een verhaal apart. Hoewel het principe van de fuzzy-regeling al vrij uit oud is dit regelprincipe door de regeltechnici een aantal jaren geleden weer van stal gehaald. Fuzzy-regeling kunnen de
klassieke PID-regeling vervangen. Automatische versnellingsbakken zijn in een
aantal gevallen met computers uitgevoerd die volgens het fuzzy-principe regelen. Uiteindelijk komt het op hetzelfde neer. De fout wordt gemeten en wordt
weggewerkt door de stuurwaarde aan te passen.
3.9
Staprespons van een proces
Het zal duidelijk zijn dat een constructeur eerst moet weten hoe een proces zich
gedraagt voordat hij zich kan gaan bezighouden met de eigenlijke techniek
van het regelen. Een belangrijk proces-gegeven is het gedrag van het proces
wanneer we een stapsgewijze verandering van de stuurwaarde aanbieden. Men
spreekt dan van een staprespons. De tijd waarin het proces reageert speelt een
belangrijke rol. Zonder dat we het ons realiseren passen we zo’n staprespons
ook in de dagelijkse praktijk toe. Voorbeelden:
1.
2.
3.
Wanneer we tijdens een proefrit willen weten of een auto goed en zonder haperen accelereert dan trappen we het gaspedaal plotseling in. We
bekijken dan in feite het gedrag van het verbrandingsproces.
Na een servicebeurt willen we het toerental van de stationair draaiende
motor wel eens plotseling vergroten om te kijken of de motor zonder
haperen of stotteren het toerental verhoogt.
De roetmeting waarbij we het gaspedaal snel geheel moeten intrappen
is regeltechnisch gezien ook een staprespons. We vergroten plotseling de
stuurwaarde en kijken hoe het proces, in dit geval het roetverloop, zich
gedraagt.
Processen worden onderverdeeld in diverse orden. Bij de meeste motoren is het
verhogen van het motortoerental door het plotseling intrappen van het gaspedaal bij benadering een 2e orde proces met dode tijd. Fig. 14 geeft het verloop
15
van zo’n proces grafisch weer. In de tijd dat het proces niet stabiel is mag de
stuurwaarde regeltechnisch niet worden veranderd. Ook een bekende proces
Figuur 14: Bij het verhogen van de stuurwaarde (y), in dit geval het (gedeeltelijk) intrappen van
het gaspedaal of het plotseling vergroten van de doorlaatopening van de stationaire regelklep
zal het motortoerental (x) zich vergroten. Ten gevolge van de massa-traagheid zal het systeem
zich naar alle waarschijnlijkheid gedragen als een twee- of meerordeproces met dode tijd. A - B
= dode tijd. Bij C zien we de invloed van de 1e orde. Bij E de invloed van de 2e orde.
variant is een proces met ’overshoot’. Het proces komt dan niet direct op zijn
eindwaarde maar schiet even door voordat het zich herstelt (fig. 15). De regeltechniek is een uiterst gecompliceerd vak wat veroorzaak wordt door het feit
dat de meeste processen niet lineair verlopen. Vaak zullen processen proefondervindelijk moeten worden ingeregeld. Om een diagnose te stellen kunnen we
tegenwoordig met behulp van moderne diagnose-testers al rijdend meetwaarden opnemen en deze vervolgens op een later tijdstip bestuderen. Deze methode staat bekend onder data-logging of data-acquisitie. In de data-blokken, of
de beschrijving daarvan, komen we regelmatig begrippen als ’gewenste’ en ’gemeten’ waarde tegen. Wanneer ’de fout’ ten gevolge van bijv. een mechanisch
defect niet snel genoeg kan worden weggeregeld dan worden door het systeem
vervangende parameters ter beschikking gesteld (noodloop). Tevens wordt een
storingscode vastgelegd.
16
Figuur 15: Er is sprake van ’overshoot’ wanneer het proces niet direct op zijn eindwaarde komt
maar even oscilleert.
4
Vragen en opgaven
Zie boek
17
Download