Uitwerkingen opgaven hoofdstuk 6 6.1 Opgave 1 Ioniserende straling; eigenschappen en detectie a Zie figuur 6.1. Figuur 6.1 Als je met het vliegtuig gaat, ontvang je de meeste straling, omdat je je op een grotere hoogte bevindt. b Zie figuur 6.1. De Concorde vliegt op 15 km hoogte en doet drie uur over de vlucht. De ontvangen stralingsdosis in de Concorde is: 30 Sv/uur. De totaal ontvangen stralingsdosis in de Concorde is: 3 × 30 = 90 Sv. Het lijnvliegtuig deed zeven uur over de vlucht, maar vloog op 10 km hoogte. De ontvangen stralingsdosis in het lijnvliegtuig is: 6 Sv/uur. De totaal ontvangen stralingsdosis in het lijnvliegtuig is: 7 × 6 = 42 Sv. Conclusie: in de Concorde ontvang je meer straling. Opgave 2 Opgave 4 a De film in de badge moet ontwikkeld worden. De drager weet niet direct dat hij blootgesteld wordt aan straling. De GM-teller kun je direct aflezen. b De GM-teller kan geen onderscheid maken tussen verschillende soorten straling. De badge kan dat wel. Figuur 6.2: dwarsdoorsnede badge (zijaanzicht) Figuur 6.3: ontwikkeld stukje fotografische film (bovenaanzicht). Figuur 6.2 Figuur 6.3 UITW ERKINGEN OPGAVEN HAVO 5 HOOFDSTUK 6 1 van 15 a Het middengedeelte waar bèta- en gammastraling worden geregistreerd, en het rechtergedeelte waar alleen gammastraling wordt geregistreerd, zijn even grijs. Dit betekent dat er geen bètastraling aanwezig was. b Het gedeelte voor gammastraling is lichtgrijs gekleurd. Het linkergedeelte, dat gevoelig is voor alfa-, bèta- en gammastraling, is zwart. Dit betekent dat er meer alfastraling dan gammastraling aanwezig was. Opgave 4 Zie figuur 6.4. Figuur 6.4 a De bron van de Rijn en de Waal ligt in de bergen in Zwitserland. Bij de vorming van bergen komen relatief veel radioactieve mineralen aan de oppervlakte. Deze stoffen worden door het water meegevoerd en, wanneer de stroomsnelheid van het water afneemt, afgezet langs de oevers van de rivier. De bron van de Maas bevindt zich op een hoogvlakte in Frankrijk. Dit is geologisch gesproken een ouder gebied dan de Alpen. Op de hoogvlakte in Frankrijk bevindt zich relatief minder radioactief materiaal aan de oppervlakte dan in de Alpen. b In Zuid-Limburg bevindt zich veel steenkool in de bodem. In dit erts komen ook altijd veel radioactieve elementen, zoals radium, voor. UITW ERKINGEN OPGAVEN HAVO 5 HOOFDSTUK 6 2 van 15 6.2 Radioactief verval Opgave 5 a Het woord ‘model’ betekent in de genoemde context een vereenvoudigde voorstelling van de werkelijkheid. b Het woord ‘element’ betekent hier de verzameling van atomen met hetzelfde aantal protonen in de kern. Opgave 6 a Zie BINAS Tabel 25: 127 N; 137 N; 147 N; 157 N en Z=7 b 147 N, voorkomen in de natuur 99,76% A = 14, A = Z + N N = 7 Opgave 7 a b c d Opgave 8 Een atoomkern bestaat uit 36 protonen en 50 neutronen Z = 36 en A = Z + N = 36 + 50 = 86. Zie BINAS Tabel 25: 86 36 Kr. a Kr: zie BINAS Tabel 40A (gegevens van elementen) of Tabel 99 (periodiek systeem der elementen): krypton. 82 84 86 b 4; zie BINAS Tabel 25: ( 80 36 Kr; 36 Kr; 36 Kr en 36 Kr); in de laatste kolom staat een –. 85 – Kr en 87 c 2; zie BINAS Tabel 25: ( 36 36 Kr); in de laatste kolom staat een . atoomsoort 3 2 He 87 36 Kr); in de laatste kolom staat een . kerndeeltjes 2p + 1n aantal elektronen 2 Z 2 A 3 He 2p + 2n 2 2 4 Ne 10 p + 12 n 10 10 22 Kr 36 p + 50 n 36 36 86 Ni 28 p + 40 n 28 28 68 U 92 p + 143 n 92 92 235 4 2 22 10 86 36 68 28 235 92 Opgave 10 N. 240 241 244 Zie BINAS Tabel 25: 239 94 Pu; 94 Pu; 94 Pu en 94 Pu. Plutonium (Pu) heeft atoomnummer 94. De kern bevat dus 94 protonen. De lading van de kern, uitgedrukt in elementaire ladingen, is +94e. Een elementaire lading is gelijk aan 1,602 ∙ 10–19 C. De lading van de plutoniumkern is dus 94 × 1,602 ∙ 10–19 = 1,506 ∙ 10–17 C. Een atoom is per definitie neutraal, dus de lading bedraagt nul coulomb. Nee, uit Tabel 25 van BINAS blijkt dat plutonium niet in de ‘vrije’ natuur voorkomt. 81 85 Kr; 36 Kr en d 3; zie BINAS Tabel 25: ( 36 Opgave 9 16 7 Neptunium: zie BINAS Tabel 40A (gegevens van elementen) of Tabel 99 (periodiek systeem der elementen): symbool Np. a Np–237 ( 237 93 Np) zendt -straling (en -straling) uit. – Np–239 ( 239 93 Np) zendt -straling (en -straling) uit. UITW ERKINGEN OPGAVEN HAVO 5 HOOFDSTUK 6 3 van 15 b Neptunium–237: 237 233 4 93 Np 91 Pa 2 α γ of 237 233 4 93 Np 91 Pa 2 He γ Pa: zie BINAS Tabel 40A (gegevens van elementen) of Tabel 99 (periodiek systeem der elementen): protactinium. Neptunium–239: 239 239 0 93 Np 94 Pu 1 β γ of 239 239 0 93 Np 94 Pu 1 e γ Pu: zie BINAS Tabel 40A (gegevens van elementen) of Tabel 99 (periodiek systeem der elementen): plutonium. Indium–114: zie BINAS Tabel 40A (gegevens van elementen) of Tabel 99 (periodiek systeem der elementen): symbool In indium–114: ( 114 49 In) Opgave 11 a 114 49 In 114 50 Sn 01β of 0 In 114 50 Sn 1 e Sn: zie BINAS Tabel 40A (gegevens van elementen) of Tabel 99 (periodiek systeem der elementen): tin. 114 0 b 114 49 In 48 Sn 1 β of 114 114 0 49 In 48 Sn 1 e Cd: zie BINAS Tabel 40A (gegevens van elementen) of Tabel 99 (periodiek systeem der elementen): cadmium. 114 49 Opgave 12 a 238 – 206 = 32 b Bij –-straling wordt in de kern een neutron omgezet in een proton en een elektron. Daardoor verandert het massagetal niet. De verandering van het massagetal is dan ook alleen te wijten aan het uitzenden van alfadeeltjes. c Bij het uitzenden van een alfadeeltje neemt het massagetal met 4 af. Het massagetal is met 32 afgenomen. Er zijn dan in de vervalreeks acht stappen waarbij een alfadeeltje wordt uitgezonden. 6.3 Opgave 13 Halveringstijd en activiteit Broom–82: zie BINAS Tabel 40A (gegevens van elementen) of Tabel 99 (periodiek systeem der elementen): symbool Br broom–82: ( 82 35 Br) Nikkel–65: zie BINAS Tabel 40A (gegevens van elementen) of Tabel 99 (periodiek systeem der elementen): symbool Ni nikkel–65: ( 65 28 Ni) a De activiteit is de hoeveelheid atomen die per seconde vervalt. De eenheid is de becquerel (Bq) (zie ook BINAS Tabel 4: Bq = s–1). UITW ERKINGEN OPGAVEN HAVO 5 HOOFDSTUK 6 4 van 15 65 b Broom–82 ( 82 35 Br) heeft een halveringstijd van 36 uur, nikkel–65 ( 28 Ni) heeft een halveringstijd van 2,6 uur (zie BINAS Tabel 25). Broom heeft de grootste halveringstijd. c Broom–82 heeft de grootste halveringstijd. De kans dat een atoom broom–82 vervalt is dan kleiner. Broom–82 is stabieler dan nikkel–65. d Het aantal atomen is in het begin vrijwel gelijk. Nikkel–65 heeft een kleinere halveringstijd. Van nikkel–65 vervallen dan meer atomen per seconde dan van broom–82. De activiteit van nikkel–65 is groter dan die van broom–82. Opgave 14 Opmerking De uitkomsten van de vragen van deze opgave zijn niet precies in overeenstemming met elkaar omdat figuur 6.5 van het kernboek niet nauwkeurig genoeg is getekend. a Zie figuur 6.5. In figuur 6.5 is te zien dat er van preparaat I na één uur meer atomen over zijn dan van preparaat II. Er zijn dan minder atomen van preparaat I vervallen dan van II. Preparaat I is daarom het stabielst. b Het aantal kernen op t = 0 bedraagt N(0) = 5,0 ∙ 1014. – na 1 halveringstijd (t½) zijn er nog 2,5 ∙ 1014 kernen; – na 2 halveringstijden (2 ∙ t½) zijn er nog 1,25 ∙ 1014 kernen; – na 3 halveringstijden (3 ∙ t½) zijn er nog 0,625 ∙ 1014 kernen. Figuur 6.5 Figuur 6.5 (1): tI = 3 ∙ t½,I = 8,7 uur de halveringstijd van preparaat I: t½,I = 2,9 h Figuur 6.5 (2): tII = 3 ∙ t½,II = 4,9 uur de halveringstijd van preparaat II: t½,II = 1,6 h c Zie figuur 6.5. De activiteit is het aantal kernen dat per seconde vervalt. In een (N,t)-diagram is de activiteit op een bepaald tijdstip gelijk aan de steilheid van de raaklijn aan de grafiek. UITW ERKINGEN OPGAVEN HAVO 5 HOOFDSTUK 6 5 van 15 d e f g Opgave 15 Teken de raaklijn aan kromme I op t = 0 h en bepaal de steilheid ervan. N 0 (0 5, 0 1014 ) AI (0 h) 3, 2 1010 Bq t0 4,35 3600 Zie figuur 6.5. Teken de raaklijn aan kromme I op t = 2,8 h en bepaal de steilheid ervan N 2,8 (0 4,1 1014 ) AI (2,8 h) 1, 7 1010 Bq t2,8 6,8 3600 Ja, de activiteit op t = 2,8 h is de helft van die op t = 0 h. Zie figuur 6.5. Het aantal atomen van preparaat II op t = 0 h: NII(0 h) = 5,0 ∙ 1014 Het aantal atomen van preparaat II op t = 5,0 h: NII(5,0 h) = 0,6 ∙ 1014 het aantal atomen dat is vervallen NII,vervallen = NII(0 h) – NII(5,0 h) = 4,4 ∙ 1014 Bij elke atoomkern van preparaat II die vervalt, wordt één alfadeeltje uitgezonden. Preparaat II heeft dan ook 4,4 ∙ 1014 alfadeeltjes uitgezonden. a Cesium–137: zie BINAS Tabel 40A (gegevens van elementen) of Tabel 99 (periodiek systeem der elementen): symbool Cs Cesium–137: ( 137 55 Cs) Halveringstijd 137 55 Cs: 30 jaar (zie BINAS Tabel 25). – na 1 halveringstijd (30 jaar) is er nog 50% over; – na 2 halveringstijden (60 jaar) is er nog 25% over; – na 3 halveringstijden (90 jaar) is er nog 12,5% over in het jaar 1986 + 90 = 2076 is er nog 12,5% over. b Na 6,0 uur is er nog een kwart over, de oorspronkelijke hoeveelheid is dan twee keer gehalveerd. Er zijn twee halveringstijden verstreken. De halveringstijd bedraagt 3,0 uur. Opgave 16 a Broom–82: zie BINAS Tabel 40A (gegevens van elementen) of Tabel 99 (periodiek systeem der elementen): symbool Br broom–82: ( 82 35 Br) Halveringstijd 82 35 Br: 36 uur (zie BINAS Tabel 25). 87,5% van het aantal broomkernen is verdwenen er is dan dus nog 12,5% over. – na 1 halveringstijd (36 uur) is er nog 50% over; – na 2 halveringstijden (72 uur) is er nog 25% over; – na 3 halveringstijden (108 uur) is er nog 12,5% over 87,5% van de broomkernen is verdwenen na 108 uur t = 1,1 ∙ 102 h b Bij vraag a werd berekend dat er na 108 uur (drie halveringstijden) nog slechts 12,5% van de oorspronkelijke kernen overgebleven is. Nog een halveringstijd later, dus na 108 h + 36 h = 144 h, resteert er dus slechts 12 × 12,5% = 6,25% van de oorspronkelijke kernen. Het aantal atomen dat nog over is na 144 h is 6,25% van 9,6 ∙ 1018 is: 6,0 ∙ 1017 = 0,6 ∙ 1018 Na 144 uur is dus vervallen: 9,6 ∙ 1018 – 0,6 ∙ 1018 = 9,0 ∙ 1018 kernen. c De activiteit is rechtevenredig met het aantal atomen. Aangezien er van de oorspronkelijke hoeveelheid atomen na 144 uur nog maar 6,25% over is, is er UITW ERKINGEN OPGAVEN HAVO 5 HOOFDSTUK 6 6 van 15 ook nog maar 6,25% over van de oorspronkelijke activiteit. De activiteit na 144 uur is 6,25% van 7,4 ∙ 1014 Bq = 4,6 ∙ 1013 Bq. Opgave 17 a Nee, de halveringstijd is een stofeigenschap en is niet afhankelijk van het aantal atomen. b Ja, de activiteit is rechtevenredig met het aantal atomen. In 2 gram zitten tweemaal zoveel atomen. De activiteit is dan ook verdubbeld. c Jood–131: zie BINAS Tabel 40A (gegevens van elementen) of Tabel 99 (periodiek systeem der elementen): symbool I Jood–131: ( 131 53 I) Halveringstijd 131 53 I: 8,0 dag (zie BINAS Tabel 25). Eerste manier – na 1 halveringstijd (8,0 dag) is de activiteit 6,144 1015 Bq 3, 072 1015 Bq; 2 – na 2 halveringstijden (16 dagen) is de activiteit 3,072 1015 Bq 1,536 1015 Bq; 2 – na 3 halveringstijden (24 dagen) is de activiteit 1,536 1015 Bq 0, 768 1015 Bq; 2 – na 4 halveringstijden (32 dagen) is de activiteit 0,768 1015 Bq 0,384 1015 Bq; 2 – na 5 halveringstijden (40 dagen) is de activiteit 0,3840 1015 Bq 0,1920 1015 Bq 1,920 1014 Bq; 2 – na 6 halveringstijden (48 dagen) is de activiteit 1,920 1014 Bq 0,9600 1014 Bq 9, 600 1013 Bq; 2 – na 7 halveringstijden (56 dagen) is de activiteit 9,600 1013 Bq 4,800 1013 Bq; 2 – na 8 halveringstijden (64 dagen) is de activiteit 4,800 1013 Bq 2,400 1013 Bq; 2 – na 9 halveringstijden (72 dagen) is de activiteit 2,400 1013 Bq 1,200 1013 Bq; 2 – na 10 halveringstijden (80 dagen) is de activiteit 1,200 1013 Bq 0,6000 1013 Bq 6,000 1012 Bq; 2 na 80 dagen is de activiteit van 6,144 ∙ 1015 Bq gedaald tot 6,000 ∙ 1012 Bq. UITW ERKINGEN OPGAVEN HAVO 5 HOOFDSTUK 6 7 van 15 Tweede manier Iedere halveringstijd daalt de activiteit met de helft: 6,144 1015 – na 1 halveringstijd is de activiteit Bq; 2 6,144 1015 – na 2 halveringstijden is de activiteit Bq; 22 6,144 1015 – na 3 halveringstijden is de activiteit Bq; 23 enzovoort 6,144 1015 – na x halveringstijden is de activiteit Bq; 2x 6,144 1015 6,144 1015 12 x 6,000 10 2 1024 210 x 12 2 6,000 10 na 10 halveringstijden (= 80 dagen) is de activiteit van 6,144 ∙ 1015 Bq gedaald tot 6,000 ∙ 1012 Bq. 6.4 Effecten van ioniserende straling op mens en milieu Opgave 18 a De gamma- en röntgenstraling worden sterk geabsorbeerd door het lood. Alfaen bètadeeltjes dringen helemaal niet door het lood heen. b Bij nucleaire ongelukken kunnen ook radioactieve gassen en radioactief besmette stofwolken vrijkomen. In het ziekenhuis komen deze gassen en stofwolken niet voor. Opgave 19 a D Eontvangen mweefsel Eontvangen Pstraling t Pstraling 5, 4 108 W 5, 4 108 J/s t 2,5 min 150 s –8 Eontvangen = 5,4 ∙ 10 × 150 = 8,10 ∙ 10–6 J mpersoon 75 kg mweefsel 0,020% van mpersoon 0, 020 mweefsel 75 15 103 kg 100 8,10 106 D 5, 4 104 Gy 15 103 D 5, 4 104 Gy H = 20 × 5,4 ∙ 10–4 = 1,1 ∙ 10–2 Sv b H QD Q -straling 20 UITW ERKINGEN OPGAVEN HAVO 5 HOOFDSTUK 6 8 van 15 Opgave 20 a Kalium–40: zie BINAS Tabel 40A (gegevens van elementen) of Tabel 99 (periodiek systeem der elementen): symbool K kalium–40: ( 40 19 K) Kalium–40 is radioactief en vervalt onder uitzending van bètastraling: 40 40 0 19 K 20 Ca 1 β of 40 40 0 19 K 20 Ca 1 e b De energie van één uitgezonden bètadeeltje bedraagt gemiddeld 0,44 MeV Eβ 0, 44 MeV 0,44 106 1, 602 1019 7, 05 1014 J De activiteit van het radioactieve kalium in het spierstelsel bedraagt 3,1 ∙ 103 Bq per seconde: Estraling/seconde = 3,1 ∙ 103 × 7,05 ∙ 10–14 = 2,19 ∙ 10–10 J per jaar: Eontvangen = 2,19 ∙ 10–10 × 3,15 ∙ 107 = 6,90 ∙ 10–3 J Eontvangen 6,90 103 D 2,3 104 Gy mspierweefsel 30 Opgave 21 a Radon–222: zie BINAS Tabel 40A (gegevens van elementen) of Tabel 99 (periodiek systeem der elementen): symbool Rn radon–222: ( 222 86 Rn) Radon–222 is radioactief en vervalt onder uitzending van alfastraling (zie BINAS Tabel 25): 222 218 4 86 Rn 84 Po 2 α of 222 218 4 86 Rn 84 Po 2 He b E = 5,486 MeV (zie BINAS Tabel 25) E = 5,486 ∙ 106 × 1,602 ∙ 10–19 = 8,7886 ∙ 10–13 J Het stralingsvermogen van het aanwezige radon–222 in de longen is: P = 5,3 ∙ 10–14 W de stralingsenergie per seconde Estraling = 5,3 ∙ 10–14 J 5,3 1014 Nα 6, 03 102 8, 7886 1013 c A2,5 dm3 6, 03 102 Bq 6,03 102 24 Bq 2,5 103 d Per seconde: Estraling/seconde = 5,1 ∙ 10–14 J per jaar: Eontvangen = 5,3 ∙ 10–14 × 3,15 ∙ 107 = 1,67 ∙ 10–6 J E H Q D Q ontvangen mlongen Qα 20 mlongen 0,15 kg 1,67 106 H 20 2,2 104 Sv 0,15 A1 m3 UITW ERKINGEN OPGAVEN HAVO 5 HOOFDSTUK 6 9 van 15 6.5 Opgave 22 Toepassingen van ioniserende straling in de gezondheidszorg Dit is bij alle situaties waarbij een stof wordt ingespoten om inwendige bestraling toe te kunnen passen. Opgave 23 a Een groot deel van de straling wordt niet geabsorbeerd door de tumor, maar gaat door het lichaam heen. b Alfastraling heeft een klein doordringend vermogen en kan niet door de wand van de capsule heen dringen. Alfastraling bereikt in dit geval de tumor niet. Daarom wordt er bètastraling gebruikt. Opgave 24 a De stralingsdosis die de tumor ontvangt van drie bronnen is 1,5 keer de stralingsdosis bij gebruik van één enkele bron. Een van de drie bronnen zendt dan 0,5 keer de stralingsenergie uit van de oorspronkelijke hoeveelheid energie. De intensiteit is dan ook de helft van de intensiteit bij gebruik van één enkele bron. b De tumor ontvangt een stralingsdosis die groter is dan bij het gebruik van één enkele bron. Het omringende gezonde weefsel wordt echter bestraald door maar een van de drie bronnen. Het gezonde weefsel ontvangt dan een kleinere dosis, omdat er vanuit één bron minder straling komt. c Bij een tumor die vlak onder de huid ligt heeft deze methode weinig zin, omdat dan de straling sowieso door weinig gezond weefsel gaat. De methode zal dan ook eerder bij diepliggende tumoren gebruikt worden. 6.6 Overige toepassingen van ioniserende straling Opgave 25 a Nee, het bestraalde voedsel is niet radioactief geworden. Er komt geen straling van af. b Nee, het bestraalde voedsel is niet radioactief geworden. Je krijgt geen radioactieve stoffen binnen. c Ja, besmet voedsel is voedsel dat radioactieve stoffen bevat. Je ontvangt de straling van deze stoffen. d Ja, door besmet voedsel te eten, krijg je radioactieve stoffen binnen. Je bent dan zelf ook besmet. Opgave 26 a Zie figuur 6.6. d½ = 0,30 cm. b Zie figuur 6.7 (1). Idoor = 44,5% van Iop. Zie figuur 6.6 (2). Aflezen: dikte d = 0,33 cm. c Er wordt minder straling doorgelaten dan het gemiddelde. Er wordt dus meer geabsorbeerd. De staalplaat is dan bij P dikker dan het gemiddelde. d Zie figuur 6.7 (3). Bij punt P: Idoor = 42% van Iop. Zie figuur 6.6 (4). Aflezen: dikte d = 0,375 cm. Eerste manier 0,373 0,33 verschil in %: 100% 13, 6% 0,33 de afwijking in P is niet toegestaan. UITW ERKINGEN OPGAVEN HAVO 5 HOOFDSTUK 6 10 van 15 Figuur 6.6 Figuur 6.7 Tweede manier Voor de variatie in dikte is 10% toegestaan de dikte d van de plaat moet zijn: 0,33 ± 0,033 cm: 0,297 cm < d 0,363 cm de afwijking in P is niet toegestaan. Opgave 27 a Het voedsel kan dan langer bewaard worden, zodat er grotere voedselvoorraden aangelegd kunnen worden. Ook is er meer tijd om het voedsel te verspreiden. b De producenten van de isotopen hebben dan een nieuwe afzetmarkt voor hun producten. c Het produceren van meer isotopen levert meer radioactief afval op. d Als de eigen oogst is mislukt, kan het land voedsel importeren of teren op aangelegde voorraden. e Enkele nadelen zijn: – Het land moet veel geld steken in het bouwen van opslagplaatsen. – Het opgeslagen of geïmporteerde voedsel heeft minder voedingswaarde. – Er moet dan meer voedsel worden opgeslagen of geïmporteerd. f Er wordt een eigen mening gevraagd, dus wordt hier geen antwoord gegeven. 6.7 Opgave 28 Kernenergie a E m c 2 (BINAS Tabel 7) m 1 u 1, 66054 1027 kg c 2,99792458 108 m/s E = 1,66054 ∙ 10–27 × (2,99792458 ∙ 108)2 E = 1,492419 ∙ 10–10 J 1,492419 1010 E 931,49 106 eV 931,49 MeV 1,6021765 1019 UITW ERKINGEN OPGAVEN HAVO 5 HOOFDSTUK 6 11 van 15 b Molybdeen–99: zie BINAS Tabel 40A (gegevens van elementen) of Tabel 99 (periodiek systeem der elementen): symbool Mo molybdeen–99: ( 99 42 Mo) Technetium–99m: symbool Tc technetium–99m: ( 99m43Tc) Mo 99 42 Tc 01β 99m 43 of Mo 99m43Tc 01 e Gebruik Tabel 25 en Tabel 7 uit BINAS en maak de volgende tabel. 99 42 99 42 99m 43 Mo Tc 0 1 1 β massa van het atoom (u) 98,90772 massa van de atoomkern (u) 98,88467964 98,90640 massa van het deeltje (u) 0,00054858 98,882881106 m = mvoor – mna = 98,88467964 – (98,882881106 + 0,00054858) = 0,00132 u c Een massa van 1 u komt overeen met een energie van 931,49 MeV (zie BINAS Tabel 7 of vraag a van deze opgave). 0,00132 u komt overeen met een energie van 0,00132 × 931,49 = 1,23 MeV d De berekende energie van het –-deeltje is gelijk aan de in BINAS Tabel 25 (laatste kolom) vermelde waarde. De energie die ontstaat bij het bètaverval wordt meegegeven aan het elektron als kinetische energie. De kinetische energie die de kern van technetium-99m krijgt is te verwaarlozen ten opzichte van die van het elektron. Opgave 29 a 235 92 90 ? U 01 n 90 Sr X 2 01 n Sr: zie BINAS Tabel 40A (gegevens van elementen); Tabel 99 (periodiek systeem der elementen) of Tabel 25 (Isotopen): 90 38 Sr. 144 1 U 01 n 90 38 Sr 54 X 2 0 n X opzoeken: Tabel 99 (periodiek systeem der elementen) of Tabel 25 (Isotopen): 144 54 Xe Xe = xenon (zie BINAS Tabel 40A (gegevens van elementen); Tabel 99 (periodiek systeem der elementen). b Gebruik Tabel 25 en Tabel 7 uit BINAS en maak de volgende tabel. 235 92 235 92 90 38 144 54 U Sr 1 0 n massa van het atoom (u) 235,04393 massa van de atoomkern (u) 234,9934606 89,90775 89,88690396 Xe 143,93823 massa van het deeltje (u) 1,008665 m = mvoor – mna = 234,9934606 + 1,008665 – (89,88690396 + 143,93823 + 2 × 1,008665) = 0,159662 u 1 u = 1,66054 ∙ 10–27 kg (BINAS Tabel 7) m = 0,159662 × 1,66054 ∙ 10–27 = 2,651 ∙ 10–28 kg UITW ERKINGEN OPGAVEN HAVO 5 HOOFDSTUK 6 12 van 15 c Eerste manier E = m ∙ c2 = 2,651 ∙ 10–28 × (2,99792458 ∙ 108)2 = 2,383 ∙ 10–11 J Tweede manier m = 0,159662 u Een massa van 1 u komt overeen met een energie van 931,49 MeV (zie BINAS Tabel 7) 0,159662 u komt overeen met een energie van 0,159662 × 931,49 = 148,7236 MeV = 148,7236 ∙ 106 × 1,6027165 ∙ 10–19 = 2,384 ∙ 10–11 J Opgave 30 a 235 U-kern: zie BINAS Tabel 40A (gegevens van elementen) of Tabel 25 (isotopen): 235U-kern ( 235 92 U). Twee middelgrote atoomkernen met de massagetallen 94 en 140: middelgrote kern (1): ( 94?? X) middelgrote kern (2): ( 140??Y) U 01 n 94 X 140 Y ?? 01 n (totaal aantal protonen en neutronen)voor de kernreactie = 235 + 1 = 236 (totaal aantal protonen en neutronen)na de kernreactie = 236 aantal protonen + neutronen 94X + 140Y = 94 + 140 = 234 (totaal aantal vrije neutronen)na de kernreactie = 236 – 234 = 2 b Een van de middelgrote kernen: cesium (Cs). Cesiumkern: zie BINAS Tabel 40A (gegevens van elementen) of Tabel 25 (isotopen): ( 140 55 Cs). 235 92 1 U 01 n 94Z X 140 55 Cs 2 0 n ZX = 92 – 55 = 37 X opzoeken: Tabel 99 (periodiek systeem der elementen) of Tabel 25 (Isotopen): 94 37 Rb (Dit isotoop van rubidium komt niet voor in Tabel 25 van BINAS.) 235 1 94 140 1 92 U 0 n 37 Rb 55 Cs 2 0 n 235 92 c Bij het uitzenden van een –-deeltje neemt het atoomnummer met één toe. Het massagetal blijft gelijk bij het uitzenden van drie –-deeltjes nemen de opeenvolgende atoomnummers iedere keer met één toe en het massagetal blijft gelijk. Bij de uiteindelijke kern die ontstaat, is dus het massagetal niet veranderd en is het atoomnummer met drie toegenomen Bij rubidium: 94 37 Rb (94 kerndeeltjes en 37 protonen) De kern die ontstaan is, bezit dus nog steeds 94 kerndeeltjes, het aantal protonen is 40 geworden 94 40 Zr (Zr = zirkonium, BINAS Tabel 99). Bij cesium: 140 55 Cs (140 kerndeeltjes en 55 protonen). De kern die ontstaan is, bezit dus nog steeds 140 kerndeeltjes, het aantal protonen is 58 geworden 140 58 Ce (Ce = cerium). UITW ERKINGEN OPGAVEN HAVO 5 HOOFDSTUK 6 13 van 15 Opgave 31 Californium-252: ( 252 98 Cf) Tin-132: zie BINAS Tabel 40A (gegevens van elementen) ( 132 50 Sn). Ook ontstaan er drie neutronen: 252 132 117 1 98 Cf 50 Sn 48 X 3 0 n X opzoeken: Tabel 99 (periodiek systeem der elementen) of Tabel 25 (Isotopen): 117 48 Cd 252 98 Cf 6.8 132 50 1 Sn 117 48 Cd 3 0 n De kerncentrale Opgave 32 a Nee, bij het produceren van de brandstofstaven ontstaat nog altijd CO2. b Nee, ook het uranium raakt op korte termijn uitgeput. c Het produceren van isotopen voor de gezondheidszorg, voor zover dat niet op een andere manier gerealiseerd kan worden. Opgave 33 a De resterende 75% wordt omgezet in warmte van het koelwater, het reactorvat en de brandstofstaven. b De centrale levert een elektrisch vermogen van P = 575 MW = 575 ∙ 106 W = 575 ∙ 106 J/s. Dit is 25% van de door de splijtingsreacties geleverde energie. De splijtingen leveren per seconde in de kerncentrale dus een energie op van Ekern = 4 × 575 ∙ 106 = 2300 ∙ 106 J Elke splijting levert een energie per seconde op van Esplijting = 175 MeV Esplijting = 175 MeV = 175 ∙ 106 × 1,602 ∙ 10–19 = 2,804 ∙ 10–11 J 2300 106 het aantal splijtingen per seconde is Nsplijting 8, 2 1019 11 2,804 10 c Eerste manier Elke splijting levert een energie per seconde op van Esplijting = 175 MeV. Een massa van 1 u komt overeen met een energie van 931,49 MeV (zie BINAS Tabel 7) 175 MeV komt overeen met een massaverschil van 175 mper splijting 0,18787 u 931, 49 0,18787 × 1,66054 ∙ 10–27 = 3,1197 ∙ 10–28 kg De totale massa-afname per uur mper uur = 8,2 ∙ 1019 × 3600 × 3,1197 ∙ 10–28 = 9,21 ∙ 10–5 kg Tweede manier De splijtingen leveren per seconde in de kerncentrale een energie op van Ekern = 2300 ∙ 106 J de splijtingen leveren per uur een energie op van Eper uur = 3600 × 2300 ∙ 106 = 8.2800 ∙ 1012 J Dit komt overeen met een massaverandering per uur van E 8, 2800 1012 m 2 9, 21 105 kg 8 2 c (2,99792458 10 ) UITW ERKINGEN OPGAVEN HAVO 5 HOOFDSTUK 6 14 van 15 d Per uur neemt de hoeveelheid U-235 af met mper uur = 9,21 ∙ 10–5 kg Dit is 0,080% van de totale hoeveelheid U–235 die per uur gebruikt wordt. 9, 21 105 In totaal wordt er dus mU- 235 100 0,115 kg verbruikt. 0,080 U–235 maakt slechts voor 4,0% deel uit van de totale hoeveelheid uranium splijtstof. 0,115 Er is dus mverrijkt uranium 100 2,9 kg per uur nodig. 4, 0 e Als er hoog verrijkt uranium als brandstof wordt gebruikt, verandert de in totaal omgezette massa niet. De massa van het uranium–235 verandert ook niet. Omdat het uranium–235 een groter deel uitmaakt van het totale uranium, neemt de massa van het uranium–238 af. De massa van het gebruikte uranium wordt kleiner. Opgave 34 De neutronen worden afgeremd, doordat ze bij botsingen kinetische energie overdragen aan de kernen waarmee ze botsen. Er wordt meer energie overgedragen als de massa van de kern gelijk is aan de massa van het neutron. Aangezien een neutron een kleine massa heeft, zijn lichte kernen beter. Opgave 35 a Het aantal elektronen van een kryptonatoom (36) is samen met het aantal elektronen van een bariumatoom (56) even groot als het aantal elektronen van een uraniumatoom (92). Dus de massa van de elektronen speelt geen rol bij de berekening van het massadefect. 1 92 141 1 b 235 92 U 0 n 36 Kr 56 Ba 3 0 n De massa voor de kernsplijting: 1 –25 mvoor = massa 235 + 1,67493 ∙ 10–27 = 92 U + massa 0 n = 3,90299 ∙ 10 3,919739 ∙ 10–25 kg De massa na de kernsplijting: 141 1 mna = massa 92 36 Kr + massa 56 Ba + 3 × massa 0 n = 1,52647 ∙ 10–25 + 2,33993 ∙ 10–25 + 3 × 1,67493 ∙ 10–27 = 3,916648 ∙ 10–25 kg het massaverschil Δm = mvoor – mna = 3,919739 ∙ 10–25 – 3,916648 ∙ 10–25 = 3,091 ∙ 10–28 kg E = m ∙ c2 = 3,091 ∙ 10–28 × (2,99792458 ∙ 108)2 = 2,778 ∙ 10–11 J Massaverschil uitgedrukt in u × 931,49 = (3,091 ∙ 10–28/1,66 ∙ 10–27) × 931,49 = 173,4 MeV = 173,4 ∙ 106 × 1,6021765 ∙ 10–19 = 2,779 ∙ 10–11 J c Bij een constant vermogen is het aantal splijtingen per seconde constant. Van de drie vrijkomende neutronen veroorzaakt er gemiddeld één een nieuwe splijting. d Om het vermogen te vergroten, moeten er meer splijtingen per seconde plaatsvinden. Dit kan door het aantal neutronen dat een nieuwe splijting veroorzaakt te vergroten. Daarvoor moeten de regelstaven uit het uranium geschoven worden tot het gewenste vermogen bereikt is. Om het vermogen weer constant te krijgen, mag er weer slechts één neutron per reactie een nieuwe splijting veroorzaken. Daarvoor moeten de regelstaven naar de oude stand worden teruggeschoven. e Als een reactor kritisch is, veroorzaakt gemiddeld één neutron per reactie een nieuwe splijting. Het vermogen van de reactor is dan constant. UITW ERKINGEN OPGAVEN HAVO 5 HOOFDSTUK 6 15 van 15