UvA-DARE (Digital Academic Repository) Exploring tumor heterogeneity Fessler, E. Link to publication Citation for published version (APA): Fessler, E. (2016). Exploring tumor heterogeneity General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl) Download date: 18 Jul 2017 Annexes Summary Nederlandse samenvatting Curriculum vitae Portfolio proefschrift Publication list Acknowledgements Summary Summary Cancer is a heterogeneous disease, which is reflected both on the cellular as well as the population level. Tumors have been recognized as ‘abnormal organs’ based on the fact that transformed cells within one tumor exist in distinct states and intricately crosstalk with nontransformed cells in the tumor microenvironment. The term intra-tumor heterogeneity conceptualizes this notion, which is nowadays recognized as an important factor determining response to treatment and development of recurrences. Inter-tumor heterogeneity refers to the fact that no tumor is like any other, which is illustrated most obviously by the comparison of tumors arising in different organs. The cells targeted for transformation, the transformationinitiating event, the environmental composition, and many more factors differ between neoplasms arising for instance in the brain (glioblastomas) and in the colon. Moreover, these parameters can also differ between tumors arising in the same organ, leading to the formation of distinct subtypes within a given type of cancer. The drivers of both intra- as well as inter-tumor heterogeneity are described in Chapter 1, where we also discuss the potential implications of this diversity on clinical management of patients and how the two forms of heterogeneity are connected. Part I – Intra-tumor heterogeneity In Chapter 2, we describe the cancer stem cell (CSC) concept, which perceives tumors as hierarchically organized entities. The hierarchy observed in tumors closely parallels the one in normal organs – (cancer) stem cells at the apex of the hierarchy give rise to transit amplifying cells, which eventually spawn differentiated progeny. Yet, the hierarchical organization of tumors might be more flexible with differentiated cells being able to gain CSC characteristics. We highlight the pathways that control the CSC state and that influence the plasticity within distinct cellular populations. The cues regulating pathway activity can originate from the tumor microenvironment and we discuss its role in shaping the CSC state and the impact of CSCs on tumor progression and metastatic spread to distant organs. In Chapter 3, we make use of primary cultures derived from glioblastoma specimen: (i) spheroid cultures, that are enriched for CSCs and (ii) cultures of tumor microvascular endothelial cells, which constitute the niche for glioblastoma CSCs. We induce differentiation of glioblastoma cells using multiple stimuli and assess their capacity to dedifferentiate upon exposure to endothelial cell-derived factors both phenotypically based on marker expression as well as functionally by determining the clonogenic potential. We purify the differentiated 184 Summary population using the cell surface marker O4, to assess the dedifferentiation potential of a population consisting solely of differentiated cells. Soluble factors derived from endothelial cells are sufficient to inflict CSC features on differentiated glioblastoma cells and we show that basic fibroblast growth factor alone is able to recapitulate the plasticity instigated by endothelial cells. Part II – Inter-tumor heterogeneity In Chapter 4 we describe the existence of subtypes within colorectal cancer (CRC) and how they can be identified. Historically, CRC has been classified based on genetic and epigenetic features. Recently, categorization using whole gene expression profiles was propelled into the spotlight. We highlight the consensus molecular subtype (CMS) classification system, which unifies several independent gene expression-based classifications of CRC. Moreover, we discuss model systems that could recapitulate distinct cancer subtypes and might thus proof useful for indepth biological characterization of the CMSs of CRC. In Chapter 5 we set out to identify the underlying drivers of the mesenchymal, poor prognosis CRC subtype (CMS4). The data presented indicate that microRNAs (miRs) belonging to the miR-200 family tune the majority of genes differentially expressed between CMS4 and CMS1-3 tumors. The expression of miR-200 family members is lower in CMS4 compared to the other subtypes and relates to high levels of methylation of the miR-200 promoter regions. Importantly, methylation levels of the miR-200 promoter regions predict CMS4 affiliation and prognosis of stage II colon cancer patients. Besides its usefulness in determining subtype affiliation, this epigenetic feature also provides an explanation for activity of specific biological programs in distinct subtypes. The members of the miR-200 family have been implicated in the epithelialmesenchymal transition (EMT) program and their low expression can therefore account for the mesenchymal appearance of CMS4 tumors. Furthermore, our data suggest that the miR-200 regulatory network is active in the epithelial compartment of mesenchymal colorectal carcinomas and manipulation of this network in CRC cell lines indicates that the miR-200 family members indeed determine CMS4-associated gene expression and functional properties. The CMSs of CRC present distinct entities, raising the question at what point during tumorigenesis their development diverges. It has previously been suggested that different colon cancer subtypes originate from distinct precursor lesions, thus implying that instead of diverging during tumor development, they follow specific adenoma-carcinoma sequences from the very beginning. The data presented in Chapter 6 indeed highlight the similarity between sessile 185 Summary serrated adenomas (SSAs) and the mesenchymal CMS4 of CRC, with respect to gene expression, expression of selected proteins, and epigenetic features. Additionally, the data suggest that EMT, a program so far associated with late stage disease, can already be active at the premalignant stage and might equip SSAs with aggressive features early on. Next to the straightforward development of one specific precursor lesion to one distinct CRC subtype, the possibility exists that one type of precursor lesion can spawn carcinomas belonging to multiple subtypes. In fact, molecular markers such as the BRAFV600E mutation and DNA hypermethylation suggest that SSAs can develop to the best and the worst prognosis CRC subtypes, CMS1 and CMS4, respectively. In Chapter 7, we set out to determine developmental drivers of CRC subtypes and elucidate the effect of the cytokine transforming growth factor-E (TGFE) on precursor lesions of CRC. Gene expression-based predictions indicate that SSAs could indeed give rise to CMS1 and CMS4 malignancies and that high levels of TGFE pathway activity direct SSAs to the mesenchymal, poor prognosis CRC subtype. In Chapter 8, we discuss the findings of this thesis work in the light of recent publications and integrate the drivers of tumor heterogeneity identified herein with additional parameters impacting on tumor (cell) diversity. 186 Nederlandse samenvatting Nederlandse samenvatting Kanker is een heterogene ziekte, wat zowel tot uiting komt op cel- als op populatie niveau. De term intra-tumor heterogeniteit beschrijft het verschil in eigenschappen tussen cellen binnen een tumor. Door deze verschillen zullen sommige cellen wel, maar andere cellen niet gevoelig zijn voor therapie waardoor de kanker na eerdere succesvolle behandeling toch uiteindelijk kan terugkomen. Inter-tumor heterogeniteit verwijst naar het feit dat geen twee tumoren hetzelfde zijn. Dit verschil is duidelijk waarneembaar tussen tumoren die in verschillende organen ontstaan; een tumor in de hersenen (glioblastoom) is erg verschillend van een tumor in de darm. Het celtype, de verandering in de cel, de omgeving van de cel en nog vele andere factoren leiden uiteindelijk tot deze verschillen. Maar ook binnen de tumoren van hetzelfde orgaan, kunnen veel van elkaar verschillen, waardoor zogenaamde “subtypes” binnen een tumorsoort worden gevormd. De factoren die een rol spelen bij zowel intra-tumor als inter-tumor heterogeniteit en hun relatie tot elkaar worden beschreven in Hoofdstuk 1. Hierin beschrijven we ook de invloed van heterogeniteit op klinische beslisvorming. Deel I – Intra-tumor heterogeniteit In Hoofdstuk 2 bespreken we het concept kankerstamcellen, die zorgen voor een hiërarchisch georganiseerd systeem in een tumor. De hiërarchie in tumoren lijkt sterk op die in normale organen – (kanker) stamcellen staan bovenaan in de hiërarchie en ontwikkelen zich tot meer gedifferentieerde dochtercellen. In kanker is deze hiërarchie wat minder strikt waardoor gedifferentieerde cellen in staat zijn opnieuw kankerstamcel-eigenschappen te verkrijgen. We belichten de signaalroutes die belangrijk zijn voor het in stand houden van de kankerstamcel eigenschappen in tumorcellen. Deze signalen kunnen ook ontstaan in de omgeving van de tumor en ook de rol hiervan op de stamcel activiteit wordt besproken. Tevens bespreken we de rol van kankerstamcellen op de ontwikkeling van de tumor en het vormen van uitzaaiingen. In Hoofdstuk 3, gebruiken we twee soorten kweken van glioblastomen, één waarin zowel kankerstamcellen als gedifferentieerde cellen aanwezig zijn en één waarin de endotheelcellen uit de omgeving van de tumorcellen gekweekt worden. We forceren kankerstamcellen tot differentiatie naar meer gedifferentieerde cellen en kijken welke factoren deze cellen nodig hebben om hun kankerstamcel kenmerken terug te krijgen. We zien dat fibroblast growth factor uitgescheiden door endotheelcellen voldoende is om dit te bewerkstelligen. 187 Nederlandse samenvatting Deel II – Inter-tumor heterogeniteit In Hoofdstuk 4 beschrijven we de verschillende subtypes in darmkanker die gebaseerd zijn op (moleculaire) genexpressie. Verschillende onderzoeksgroepen hebben deze subtypes geïdentificeerd en zijn uiteindelijk gezamenlijk tot een consensus classificatie gekomen die moet leiden tot uniformiteit. Daarnaast beschrijven we modellen die gebruikt kunnen worden bij experimenten in cellen en muizen om deze subtypes beter te kunnen onderzoeken. In Hoofdstuk 5 identificeren we factoren die een rol spelen in de ontwikkelen van één van de subtypes, namelijk het mesenchymale subtype, dat gekenmerkt wordt door een slechte overlevingskans. We laten zien dat microRNAs (miRs), behorende tot de miR-200 familie, de genexpressie van deze subgroep tumoren beïnvloedt. De expressie van deze miR familie is lager in het mesenchymale subtype in vergelijking tot de andere subgroepen, wat komt door methylatie, een manier om een gen uit te schakelen. We laten ook zien dat deze methylatie van de miR familie de overleving van darmkanker patiënten kan voorspellen. Genen van deze familie zijn eerder gelinkt aan een proces dat epithelial-mesenchymal transition (EMT) heet en lage expressie van deze genen kan dus een verklaring zijn voor het mesenchymale karakter van deze tumoren. De subtypes in darmkanker verschillen in grote mate van elkaar en de vraag is wanneer in de ontwikkeling van tumoren deze verschillen ontstaan. Eerder is gesuggereerd dat verschillende subtypes uit verschillende premaligne afwijkingen, bijvoorbeeld poliepen ontstaan. Dit impliceert dat de verschillen al in een vroeg stadium aanwezig zijn en dat deze tumoren behorende tot een subtype vanaf het begin een andere route bewandelen dan tumoren behorende tot een ander subtype. In Hoofdstuk 6 laten we de overeenkomsten in genexpressie, eiwitten en methylatie tussen sessiele (vlakke) poliepen en het mesenchymale subtype zien. Daarnaast laten we zien dat EMT, een proces dat meestal wordt geassocieerd met vergevorderde ziekte, al actief is in deze sessiele poliepen waardoor deze poliepen wellicht in een vroeg stadium al agressieve kenmerken hebben. Naast de eenvoudige verklaring dat een bepaald subtype uit een bepaalde premaligne afwijking ontstaat, kan het ook zo zijn dat één type afwijking zich kan ontwikkelen tot tumoren uit verschillende subtypes. Moleculaire eigenschappen van sessiele poliepen suggereren dat ze zich kunnen ontwikkelen tot tumoren uit twee subtypes: degene met de beste én degene met de slechtste prognose. In Hoofdstuk 7 proberen we de factoren die belangrijk zijn voor het 188 Nederlandse samenvatting ontwikkelen van de tumoren in de verschillende subtypes te identificeren. We bestuderen het effect van transforming growth factor-E (TGFE) op premaligne afwijkingen. Op basis van genexpressie zien we dat sessiele poliepen inderdaad tot tumoren uit deze twee subtypes kunnen leiden en dat verhoogde activiteit van TGFE sessiele poliepen in de richting van het mesenchymale subtype doet sturen. In Hoofdstuk 8 zetten we de gevonden resultaten in perspectief van de recente publicaties van anderen en beschrijven we andere factoren die van invloed zijn op tumor heterogeniteit. 189 Curriculum vitae Curriculum vitae Evelyn Fessler was born on March 25th 1987 in Laupheim, Germany to her parents Marlene and Günther Fessler. After having lived in a tiny village for 19 years and having completed her primary education, she moved to Erlangen in 2006, where she studied Molecular Medicine at the Friedrich Alexander University. She completed her studies with her undergraduate thesis work performed in the laboratory of Prof. Dr. Robert A. Weinberg (Whitehead Institute for Biomedical Research/MIT, Cambridge, USA) and graduated with a Diplom (equivalent to MSc) in 2011. Her undergraduate thesis work focused on the role of immune cells in cancer cell metastasis under the supervision of Dr. Asaf Spiegel. In 2011, she was awarded a PhD scholarship from the AMC Graduate School for Medical Sciences, which allowed her to join the laboratory of Prof. Dr. Jan Paul Medema at the Academic Medical Center in Amsterdam (The Netherlands). She continued to investigate the role of the tumor microenvironment and additional causes of tumor heterogeneity during her doctoral work, which is presented in this thesis. 190 Portfolio proefschrift Portfolio proefschrift PhD training Year ECTS The Amsterdam international medical summer school: molecular pathways in cancer, initiation, maintenance and therapy 2011 1 Laboratory animal science, article 9 (Utrecht, NL) 2011 3.9 Practical biostatistics 2015 1.1 Department seminars (CEMM) 2011-2016 5 AMC oncology seminars (OASIS) 2011-2016 5 Workshop R2: analysis of tumor genomics data 2014 0.1 Cancer Genomics meeting (Amsterdam, NL) 2012/14/15 2.2 Annual OOA PhD retreat (Ermelo, NL, poster presentation) 2012 1 22nd biennial congress of the European Association for Cancer Research (EACR, Barcelona, ES) 2012 1 Gordon Research Seminar: stem cells & cancer (Ventura, CA, USA, oral and poster presentation) 2015 1 Gordon Research Conference: stem cells & cancer (Ventura, CA, USA, poster presentation) 2015 1 AMC oncology seminar (OASIS, Amsterdam, NL, oral presentation) 2015 1 Cancer Genomics meeting (Amsterdam, NL, poster presentation) 2015 1 Keuzeonderwijs 2012 0.5 Master student (University of Amsterdam) 2013-2014 1.5 Courses Seminars and workshops Presentations and conferences Supervision Awards PhD scholarship from the AMC Graduate School for Medical Sciences 2011 191 Publication list Publication list Fessler E, Medema JP. Colorectal cancer subtypes: developmental origin and microenvironmental regulation. Submitted. Fessler E, Jansen M, De Sousa E Melo F, Zhao L, Prasetyanti PR, Rodermond H, Kandimalla R, Linnekamp JF, Franitza M, van Hooff SR, de Jong JH, Oppeneer SC, van Noesel CJM, Dekker E, Stassi G, Wang X, Medema JP, Vermeulen L. A multidimensional network approach reveals miRNAs as determinants of the mesenchymal colorectal cancer subtype. Oncogene, in press (2016). Fessler E, Drost J, van Hooff SR, Linnekamp JF, Wang X, Jansen M, De Sousa E Melo F, Prasetyanti PR, IJspeert JEG, Franitza M, Nürnberg P, van Noesel CJM, Dekker E, Vermeulen L, Clevers H, Medema JP. TGFE signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Molecular Medicine 8(7), 745-760 (2016). Spiegel A, Brooks MW, Houshyar S, Reinhardt F, Ardolino M, Fessler E, Chen MB, Krall JA, DeCock J, Zervantonakis IK, Iannello A, Iwamoto Y, Cortez-Retamozo V, Kamm RD, Pittet MJ, Raulet DH, Weinberg RA. Neutrophils suppress intraluminal NK-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discovery 6(6), 630-649 (2016). Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, Bot BM, Morris JS, Simon IM, Gerster S, Fessler E, De Sousa E Melo F, Missiaglia E, Ramay H, Barras D, Homicsko K, Maru D, Manyam GC, Broom B, Boige V, Perez-Villamil B, Laderas T, Salazar R, Gray JW, Hanahan D, Tabernero J, Bernards R, Friend SH, Laurent-Puig P, Medema JP, Sadanandam A, Wessels L, Delorenzi M, Kopetz S, Vermeulen L, Tejpar S. The consensus molecular subtypes of colorectal cancer. Nature Medicine 21(11), 1350-1356 (2015). Fessler E, Borovski T, Medema JP. Endothelial cells induce cancer stem cell features in differentiated glioblastoma cells via bFGF. Molecular Cancer 14(157), (2015). Büller NV, Rosekrans SL, Metcalfe C, Heijmans J, van Dop WA, Fessler E, Jansen M, Ahn C, Vermeulen JL, Westendorp BF, Robanus-Maandag EC, Offerhaus GJ, Medema JP, D'Haens GR, Wildenberg ME, de Sauvage FJ, Muncan V, van den Brink GR. Stromal Indian hedgehog signaling is required for intestinal adenoma formation in mice. Gastroenterology 148(1), 170-180 (2015). Colak S, Zimberlin C, Fessler E, Hogdal L, Prasetyanti P, Grandela C, Letai A, Medema JP. Decreased mitochondrial priming determines chemoresistance of colon cancer stem cells. Cell Death and Differentiation 21, 1170-1177 (2014). De Sousa E Melo F, Vermeulen L, Fessler E, Medema JP. Cancer heterogeneity - a multifaceted view. EMBO Reports 14(8), 686-695 (2013). De Sousa E Melo F, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LP, de Jong JH, de Boer OJ, van Leersum R, Bijlsma MF, Rodermond H, van der Heijden M, van Noesel CJ, Tuynman JB, Dekker E, Markowetz F, Medema JP, Vermeulen L. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nature Medicine 19(5), 614-618 (2013). Fessler E, Dijkgraaf FE, De Sousa E Melo F, Medema JP. Cancer stem cell dynamics in tumor progression and metastasis: is the microenvironment to blame? Cancer Letters 341(1), 97-104 (2013). De Sousa E Melo F, Colak S, Buikhuisen J, Koster J, Cameron K, de Jong JH, Tuynman JB, Prasetyanti PR, Fessler E, van den Bergh SP, Rodermond H, Dekker E, van der Loos CM, Pals ST, van de Vijver MJ, Versteeg R, Richel DJ, Vermeulen L, Medema JP. Methylation of cancer-stem-cell-associated Wnt target genes predicts poor prognosis in colorectal cancer patients. Cell Stem Cell 9(5), 476-485 (2011). 192 Acknowledgements Acknowledgements Dear Jan Paul, thank you for giving me the opportunity to be part of your team and for your support. You personify the fact that there is a lot of fun to be had in science and your enthusiasm is a great source of inspiration. Thank you for challenging discussions and ‘adventurous’ experiments, and most importantly, thank you for your trust and for believing in me throughout these years. It was a pleasure to work with you, Louis. Your ceaseless optimism and ability to see the positive side of every piece of data and situation is admirable. Thank you for being my copromotor! I would like to thank my committee members, Gijs van den Brink, Jarno Drost, René Bernards, Ron van Noorden, Steven Pals, and Tom Würdinger, for evaluating this thesis, for preparing an opposition, and for participating in the defense. Dear Bob, thank you for giving me the opportunity to work in your lab and perform exciting research. It was a great privilege to be part of your team! Thank you, Asaf, for your supervision and trust. May the force be with you in the years to come! A big thank you to Mary and Annie for taking care of me during my time in Cambridge, and to Jordan, Wai, Tsukasa, Katharina, Nora, and Philipp. I was fortunate to have been working together with great collaborators during my PhD. Evelien, Joep, and Suzie – thank you for including patients, collecting material, and for your continued interest in our research. Many thanks to Carel and Marnix for your pathological assistance. Thank you, Berend, for being a source of infinite wisdom about cell sorters, for teaching me how to use them, and for your continued support. A special thank you to Xin and Sander – your bioinformatical skills are priceless. Thank you for patiently answering all my questions and for performing a plethora of analyses ‘just to see how it looks’. I would like to thank everyone in the LEXOR team for always having an open ear and lending a helping hand. I am very grateful to have spent my PhD working in this unique team. 193 Acknowledgements Felipe, thank you for introducing me to the wonders of cancer stem cell culture. I very much appreciate your continuous support. One-and-only Tijana, thank you for keeping in touch and for sharing stories from inside and outside the lab over many coffees. Catarina, I have never learned as much from a person in such a short time, thank you for sharing your knowledge and experience. Helene, you have been a truly inspiring office neighbor, never shy of a smart question and always enthusiastic about (your) research. Lisette, thank you for always instantly replying to any question and for your readiness to help. Many thanks to you, Arlene, for your open personality and diligence. You are one-of-a-kind and I consider myself lucky to have shared many special moments with you and Johan. I am glad I got to know you, Eva, and will cherish our conversations and your honesty. Maartje, you are the calmest PhD student I know, thank you for always being a source of serenity. Bregje, I still remember meeting you on your very first day and I am glad we shared this last part of our PhD journey. Joyce, Luigi, and Selcuk – it was a great pleasure to work with you and I will dearly miss your positive spirit. Prashanthi, you are the sweetest person I have ever met, please never change! Maarten, Salvatore, and Raju, thank you for many discussions and valuable advice. Valeria, Simone, Serena, Dita, Klaas, Roos, Veronique, Anne, Remy, Stephanie, Aafke, Aarti, Cynthia, Sanne, Nicolas, Daniel, Sophie, Kristiaan, Lisanne, and Maria thank you for your gezelligheid and for making the LEXOR team – in the past and present – a conglomerate of great minds. Thanks to Kate, Joan, Saskia, Hans, and Gregor for your assistance in any aspect of scientific life. A big thank you to our fellow LEXORians from MDL – Ana, Silvia, Danielle, and Carmen – and to everyone from the CEMM department for your support and for many friendly encounters. I admire you, Janneke, for your determination and fortitude. Thank you for sincerely caring and for all you have done for me – listening and organizing just being the top of a very long list. I highly value your opinion and hold you very dear! Cheriaan, thank you so much for being the most amazing couple and for your friendship. You have made our time here exceptional with myriad dinners and trips. Thank you for always having an open door and for making us feel right at home in Amsterdam. Cheryl, thank you for always being there, for understanding without words, and for exactly knowing how I would feel in every situation. You mean a lot to me! Jurriaan, thank you for your sincerity and for handling the taste with me. 194 Acknowledgements Dörte, zehn Jahre ist es nun her seit wir unsere erste gemeinsame Wohnung bezogen haben und unsere Freundschaft hat viele Veränderungen überstanden. Egal wie viele Kilometer zwischen uns liegen, weiß ich, dass Du immer für mich da bist und jedes Mal wenn wir uns wiedersehen ist es, als hätten wir auch die letzten sechs Jahre zusammen gewohnt. Gabi und Ewald, danke für Eure Anteilnahme und dass ich mich bei Euch und mit Euch wie zuhause fühlen kann. Luise, Doris und Gernot – vielen Dank für Eure Herzlichkeit und für viele schöne Momente. Vielen Dank, Angi und Nico, dass Ihr mich so liebevoll aufgenommen habt und ich an Eurer kleinen Familie teilhaben darf. Danke, Hanna, dass Du so ein kleiner Sonnenschein bist und uns so viel Freude bereitest! Herzlichen Dank an Irmi, Elli, Bruni und Willi, Elfriede und Gerhard, Leni und Sepp, Carmen, Julian, Manuel, Elena und Angela, Juliane und die beiden Stefans mit Ihren jungen Familien für Euren Rückhalt und schöne Erinnerungen. Vielen Dank, Mama und Papa, für Eure – im wahrsten Sinne des Wortes – grenzenlose Unterstützung. Danke, dass zuhause immer ein sorgenfreier Ort ist und Ihr jederzeit für mich da seid. Liebe Christina, mit Deiner einzigartigen Tatkraft und Entschlossenheit bist Du ein ganz besonders Vorbild und ich bin unglaublich stolz auf Dich. Ich bin dankbar, so eine liebevolle Familie zu haben und jedes Mal aufs Neue verblüffen mich Eure guten Herzen und Eure Einzigartigkeit! Lucas, danke für Deine Unterstützung, Dein Verständnis und Deine Warmherzigkeit. Danke, dass Du jederzeit für mich da bist und ich mich immer auf Dich verlassen kann. Ich freue mich auf all die Abenteuer, die wir in Zukunft zusammen erleben werden und bin mir sicher, dass wir gemeinsam alles schaffen können. Evelyn 195 Acknowledgements 196