Warmte In een fles met een warmtecapaciteit van 200 J/K zit 750 ml water. De temperatuur van fles en water is 40C. Je zet deze fles in de koelkast tot de temperatuur 8C is geworden. Bereken hoeveel warmte de koelkast aan de fles water moet onttrekken. Uitwerking: Zowel de fles als het water moeten afkoelen. 750 ml water weegt 750 g of beter 750 × 0,998 gram. Q = Qfles + Qwater = C T + m × c × T = 200 (40 8) + 0,750 × 0,998 × 4180 × (40 8) = 1,1 105 J In een thermoskan van verwaarloosbare warmtecapaciteit zit 400 gram water van 40C. Je stopt er 100 gram ijsblokjes van -18C in. Bereken de temperatuur zoals je die uiteindelijk verwacht. Uitwerking: De warmte van het water gaat naar het ijs om dat op smelttemperatuur te brengen, dan het ijs te laten smelten en het ontstane water op te warmen tot de eindtemperatuur. We veronderstellen een eindtemperatuur t tussen de 0C en de 40C. Qwater = Qijs + Qsmelten + Qopwarm 0,400 × 4180 × (40 t) = 0,100 × 2200 × 18 + 0,100 × 334 103 + 0,100 × 4180 × t t = 14C Een andere goede tactiek is het water laten afkoelen tot 0C en die warmte gebruiken om het ijs op te warmen, te laten smelten en dan de 0,500 g water op te warmen. We gaan uit van de volgende veronderstellingen: In dit lokaal zitten 32 personen. Elke persoon kun je beschouwen als een kacheltje van 120 W. De ramen en deuren zijn dicht. Er zit 100 m3 lucht in deze ruimte. Er branden 14 TLbuizen van elk 30 W. Maak op basis van een berekening een schatting van de temperatuurstijging in het lokaal in 50 minuten, als er geen warmte-uitwisseling met de omgeving zou zijn. Uitwerking: Q = P × t = (32 × 120 + 14 × 30) × (50 × 60) = 12,78 106 J. Veronderstel dat die warmte alleen naar de lucht zou gaan, dan stijgt die 1,293 × 100 kg lucht in temperatuur: Q = m × c × T 12,78 106 = 129,3 × 1000 × T T = 98,8C. Menigeen denkt ‘dat kan niet waar zijn’, Terecht. Om te beginnen zitten die 32 personen ook in dat lokaal, dat is 32 × 60 kg water!! Reken nu maar opnieuw. WERKKAMER Ga uit van de volgende veronderstelling: Het is winter. In mijn werkkamer is het 15C en zet ik een elektrische kachel aan. Die blijft aan staan. Geen thermostaat dus. Het blijkt dat de temperatuur langzaam naar een maximale waarde gaat. Schets een grafiek van de temperatuur als functie van de tijd en verklaar de grafiek. Uitwerking: Het kacheltje geeft een constant vermogen. Maar als de temperatuur in de kamer stijgt, stijgt ook het temperatuurverschil met de omgeving en gaat van het vermogen steeds meer verloren naar de omgeving. Zie vorige vraag voor als dat niet gebeurt. De temperatuurstijging per minuut neemt daardoor af. Tenslotte wordt evenwicht bereikt, waarbij alle warmte eigenlijk direct weer wordt afgestaan. Hiernaast is de doorsnede van een wand van een kamer getekend, met daarin de temperatuur als functie van de plaats. Binnen is het 20C, buiten is het 4C. Deze temperaturen blijven zo lange tijd bestaan. De wand bestaat uit 2 even dikke delen, echter van verschillende materialen. Leid af welk van de twee materialen het beste geleidt. Uitwerking: De temperatuur blijft lange tijd op hetzelfde niveau. Dat betekent dat de warmte van de kamer richting B even groot is als van B naar A en van A naar buiten. Een goede isolator heeft bij een temperatuurverschil maar een kleine warmtestroom. Een goede geleider heeft bij eenzelfde temperatuurverschil juist een grote warmtestroom, maar bij eenzelfde warmtestroom dus een kleiner temperatuurverschil. A is de betere geleider. WASMACHINE Er zijn elektrische wasmachines die zelf hun water verwarmen en machines die heet water uit een reservoir kunnen betrekken. Leg uit welke machine jouw voorkeur zou hebben; gemak is hierbij geen argument. Uitwerking: Veronderstel dat het reservoir een zonneboiler is. Dan krijg je de energie ‘gratis’. Dat is gunstig. Bovendien kun je opmerken dat energie van lage kwaliteit wordt gebruikt, zodat je energie van hoge kwaliteit voor andere doeleinden kunt gebruiken. Dus ik kies voor de machine die het water uit deze boiler gebruikt. Terecht schrijven veel leerlingen dat de afstand tussen de gebruiksplaats en de productieplaats van het warme water zo klein mogelijk moet zijn. Echt ‘gratis’ is de energie niet omdat je eerst de boiler en zonnecollector moet kopen. Het is een economisch verhaal over afschrijftermijnen. Als het reservoir een gas- of elektrische boiler is, dan liggen de zaken weer anders. Er wordt dan hoge kwaliteit energie gebruikt om lage kwaliteit te maken. Hier gaat zeker het bezwaar op dat dat hete water lange tijd ligt te wachten op gebruik, waardoor vast warmte weglekt. Het rendement van de gasboiler is beter dan die van de elektriciteitscentrale. Het rendement van de elektrische boiler is niet hoger dan van de elektrische verwarming in de wasmachine. THERMOSFLES In een thermosfles met een warmtecapaciteit van 30 J/K bevindt zich 1,00 dl water van 12C. We laten een blokje aluminium van 40 g en 100C er in zakken. Bereken de temperatuur die het water krijgt. Uitwerking: Voor de thermosfles geldt Q = C × T met C = 30 J/K Voor het water geldt Q = m × c × T met m = 0,100 kg en c = 4180 J/(kg K) Voor het aluminium geldt Q = m × c × T met m = 0,040 kg en c = 880 J/(kg K). Opgenomen warmte = Afgestane warmte 30 × (t 12) + 0,100 × 4180 × (t 12) = 0,040 × 880 × (100 t) t = 18,4C In een sauna kun je het wel 95C maken. De houten banken erin hebben dan ook die temperatuur. Toch kun je rustig op zo’n bank gaan zitten, maar in water van 95C gaan zitten kun je beter niet doen, dat heeft verbranden tot gevolg. Leg met behulp van de natuurkundige begrippen uit deze hoofdstukken uit hoe dat kan. Uitwerking: In het contact met water heb je te maken met de grote warmtecapaciteit van het water en de geleiding en stroming van het water. Al het hete water kan zijn energie aan de huis afgeven. Het hout van de sauna geleidt slecht en stroomt helemaal niet. Bij het contact met de huid staat het bovenste dunne laagje zijn warmte af aan de huid, maar koelt daarmee af. Door de slechte geleiding komt geen warmte van diepere lagen beschikbaar. Steenwol wordt gebruikt voor warmte-isolatie van woningen. Warmte-isolatie beperkt de energievraag voor woningverwarming. Maar voor de productie van steenwol is energie nodig: 33 MJ/kg. Het brandstofverbruik voor verwarming van een kleine, niet-geïsoleerde woning is 1600 m3 aardgas per jaar. De woning wordt geïsoleerd met 50 kg steenwol. Dat levert een brandstofbesparing op van 25%. Bereken na hoeveel tijd de energiebesparing door deze steenwol even groot is als de energiekosten van deze maatregel. Uitwerking: Er wordt 50 kg steenwol gebruikt en dat kost aan productie 50 × 33 MJ = 1650 MJ. De besparing is 25% van 1600 m3 en dus 400 m3 à 32 MJ, dus 12800 MJ. Na 1650 / 12800 = 0,13 jaar = 1,5 maanden is het aan energie terug verdiend; een goede wintermaand is dus voldoende. Een warmtemeter met een warmtecapaciteit van 300 J/K bevat 0,80 kg vloeistof. De vloeistof wordt verwarmd door een elektrische dompelaar met een vermogen van 120 W. Het diagram hiernaast geeft de temperatuur T als functie van de tijd t. Bereken de soortelijke warmte van de vloeistof. Uitwerking: Neem een tijd. Bijvoorbeeld 180 s. De toegevoerde energie E = P × t = 120 × 180 = 21600 J. Daarmee stijgen de warmtemeter en de vloeistof 32 20 = 12C in temperatuur. Dus: Q = m × c × T + C × T 21600 = 0,80 × c × 12 + 300 × 12 c = 1,9 × 103 J/(kg K) Een loden kogel van 1,70 kg laten we van 20 m hoogte vallen. Hierbij wordt zwaarte-energie omgezet in bewegingsenergie. Als de kogel op de grond komt, wordt de bewegingsenergie omgezet in warmte. Deze warmte komt in de kogel, die daardoor in temperatuur stijgt. Bereken de temperatuurstijging van de kogel. Uitwerking: De zwaarte-energie Ez = m × g × h en de warmte Q = m × c × T 1,70 × 9,81 × 20 = 1,70 × 128 × T T = 1,5C. Je ziet aan de vergelijking dat de massa niet van belang is. FIETSPOMP Bij het oppompen van de band met een handpompje kun je opmerken dat het koppelstuk tussen pomp en ventiel van de band warm wordt. De buis van de pomp zelf is dan nog niet warm. Dat opwarmen van het uiteinde is uit te leggen door op de lucht in de pomp de hoofdwet van de thermodynamica toe te passen: W + Q = E Leg dat daarmee uit. Uitwerking: Het naar binnen drukken van de zuiger in de pomp gebeurt snel en is te beschouwen als een adiabatisch proces, dus Q = 0. Als gas heeft lucht alleen kinetische energie en zijn de andere energievormen verwaarloosbaar. We hebben te maken met ingaande arbeid, dus W > 0. Het gevolg is dat ook Ek = W > 0 en de lucht in temperatuur stijgt. Door geleiding stijgt ook de temperatuur van het koppelstuk. Als je als tijd neemt de tijd tussen het begin van het pompen en het warm worden van het koppelstuk, dan staat de lucht al warmte af en is Q < 0 en is Ek < W. Je gebruikt in je uitleg dan al dat de lucht opgewarmd wordt. Dat is eigenlijk niet de bedoeling. A B C A AUTO OP HELLING Een auto van 1,3 × 103 kg rijdt vanaf de parkeerplaats een helling van 4% af, dus sin = 0,04. De automobilist is zo onverstandig geweest de auto in ‘zijn vrij’ te zetten om benzine te sparen. Bereken, op basis van een energieberekening, na welke afstand de snelheid 120 km/h is, als je wrijving mag verwaarlozen en je als beginsnelheid 0 km/h neemt. Op zeker moment – de auto rijdt weer op een horizontale weg – moet de automobilist remmen en stoppen. Zijn snelheid was toen 120 km/h. Bij het remmen wordt de kinetische energie van de auto omgezet in inwendige energie van de remschijven. De remschijven vóór nemen ieder 35% van de energie op. De remschijven bestaan uit ijzer. Bereken de massa van de remschijf vóór als temperatuurstijging ervan 120 C bedraagt bij dit remmen. Leid af hoe groot die temperatuurstijging is op het moment dat de snelheid nog maar 60 km/h is. Uitwerking: 120 km/h = 33,3 m/s oplossing 1: Tijdens de afdaling wordt zwaarte-energie omgezet in bewegingsenergie: mgh = ½mv² 9,81 × h = ½ × 33,3² en dus h = 56,6 m. Vanwege de helling geldt: sin = h / s en dus 0,04 = 56,6 / s s = 1,4 103 m. oplossing 2: Tijdens de afdaling komt de arbeid van de zwaartekracht ten goede aan de kinetische energie. F × s × cos = ½mv² 1,3 103 × 9,81 × s × cos (90 - 2,3) = ½ × 1,3103 × 33,3² = 7,21105 s = 1,4103 m B 35% van de kinetische energie is 2,52 105 J Deze wordt omgezet in warmte: Q = m c T 2,52105 = m × 460 × 120 m = 4,6 kg C Als de snelheid is gehalveerd, is er nog maar een kwart van de kinetische energie over. Er is dus al driekwart omgezet in warmte. De temperatuurstijging zal ¾ × 120 = 90 C zijn. DIFFUSIE (titel weghalen!) Op het aanrecht heb ik twee glazen neergezet. De ene gevuld met koud water en de ander met heet water. In beide laat ik een paar druppels rode inkt vallen. In het glas gevuld met koud water zie je slierten. In het glas gevuld met heet water ook, maar vervagen de slierten snel. Leg in natuurkundetermen uit wat hier aan de hand is. Uitwerking: Heet water betekent dat de moleculen sneller bewegen Ze botsen dan ook vaker en heftiger De slierten worden uiteen getikt A B A B VARKENSWARMTE ( n.a.v. een artikel van Karel Knip, NRC 14 okt 2000) Onlangs is er geopperd om varkens te gaan houden in een zes-verdiepingenflat op de Maasvlakte, eufemistisch: een agroproductiepark. Hierover wordt o.a. een ethische discussie gevoerd. Daarover gaat de volgende vraag niet. Onze vraag betreft de energiehuishouding van zo’n project. Het gaat om 300.000 varkens die elk afzonderlijk te beschouwen zijn als kacheltjes van 100 W. We beschouwen de ‘varkensflat met varkens’ als systeem. Bereken de jaarproductie aan warmte van de ‘varkensflat’. Stel de energievergelijking op voor het systeem en geef een toelichting bij elke term. Uitwerking: E=P×t P = 300.000 × 100 W = 3 107 W t = 1 jaar = 365 d = 365 × 24 h = 365 × 24 × 3600 s E = 3 107 × 365 × 24 × 3600 = 9,5 1014 J Dit kan zeer uitgebreid. In ieder geval heb je te maken met toevoer van chemische energie in de vorm van varkens en voer en van afvoer van warmte en chemische energie in de vorm van varkens en mest. Verder is de stal aangesloten op het elektriciteitsnet en loopt er personeel in en uit, die daar arbeid verrichten en energie omzetten. Algemeen geldt Q + W = E Q staat voor de warmte. Er wordt alleen warmte afgevoerd. Het systeem uit betekent negatief W staat voor arbeid. Er werken geen krachten op het systeem die arbeid verrichten. Deze term is dus nul E geeft de verandering van de energie-inhoud van het systeem weer. Er wordt chemische energie in de vorm van voer toegevoegd. die term is positief Er wordt chemische energie in de vorm van varkens en van mest afgevoerd; negatief We veronderstellen dat er licht brandt. Elektrische energie neemt af en wordt warmte. aan beide zijden een negatieve term eveneens zullen er ventillatoren, liften en mensen werken. Elk van deze termen zorgt voor een toevoer van energie en verhoging van de warmte-afgifte. Als het een stationair draaiend systeem is én je stelt dat vóór het ‘=’-teken de stromen en erachter de energie-inhoud-verandering staat, dan kom ik tot: +Ech(voer + mensen die werken) + Eelek - Q - Ech (varkens) - Ech(mest) = 0 Hierin is iedere symbool positief; de richting volgt uit het teken ervoor: + erin en - eruit. GASVERING Bij het testen van de cilinder van een gasveer perst men vanuit V = 7,5 106 m3 het opgesloten gas samen tot een druk van 9,5 bar. Bij de meetresultaten zit een p,V-diagram van het gas bij het doorlopen van dit proces. Zie bijgaande grafiek. Bepaal de bij het samenpersen door het gas verrichte arbeid. Uitwerking: W = p × V = oppervlakte onder de grafiek Bij het samenpersen is de door het gas verrichte arbeid negatief vanwege V<0 We benaderen <p> = 3 105 Pa en V = - 6 106 m3 W = p × V = 3 105 × - 6 106 = - 1,8 J A WARMTE Een boiler bevat 60 liter water van 15C. Het verwarmingselement van de boiler (230 V - 1,2 kW) verwarmt het water in 4,1h tot een temperatuur van 75C. Daarbij is de warmteafgifte aan de omgeving verwaarloosbaar klein. Bereken de warmtecapaciteit van de lege boiler. B Een blokje ijs van 10 g en 10C leg je in een glas met 10 g water van 10C. De invloed van het glas en de omgeving is verwaarloosbaar. Bereken de eindtemperatuur. C A B C Een kopje hete koffie staat op tafel. De temperatuur in de kamer is 20C en verandert niet. Schets de grafiek van de temperatuur van de koffie als functie van de tijd en verklaar het verloop van de grafiek. Uitwerking: De warmte van het element gaat naar de boiler en naar het water. P × t = C × T + m × c × T 1,2103 × 4,1 × 3600 = C × (75 - 15) + 60 × 4,18103 × (75 - 15) × C = 2,66106 J/K De eindsituatie is op voorhand niet duidelijk. Het zou onder nul kunnen zijn, het zou boven nul kunnen zijn, maar ook kan het ijs geheel of ten dele smelten met 0C als resultaat. Je moet dus eerst bedenken hoe je dat gaat doen. Mijn idee zou zijn om eerst het ‘warme’ water tot 0C af te koelen en te kijken wat ik met de beschikbare energie kan doen. afkoelen water: 4,18103 × 10 = 418 J opwarmen ijs tot 0C: Q = m × c × T = 10103 ×2,2103 × 10 = 220 J. Er is nog 198 J over om ijs te smelten en eventueel de 20 g water te verwarmen. Voor het smelten is nodig: Q = smeltwarmte × massa = 334 J/g × 10 g = 3340 J. Het ijs kan niet allemaal smelten, dus de eindtemperatuur is 0C. De grafiek moet aan de volgende eisen voldoen. Hij moet dalen; hij moet steeds langzamer dalen en hij moet asymptotisch naar de 20C van de kamer gaan. Let op: beschrijven is iets anders dan verklaren. Verklaring: De kop koffie heeft een hogere temperatuur dan de omgeving en geeft daarom warmte af aan die omgeving, waardoor hij afkoelt. Door het afkoelen wordt het temperatuurverschil met de omgeving kleiner, de warmte-afgifte gaat daarom langzamer en de afkoeling dus ook. Uiteindelijk nadert de temperatuur tot 20C en wordt geen warmte meer aan de omgeving afgegeven. A B WARMTE Een scheut water 10C doe je in een glas met 125 g melk van 90C in de hoop je mond niet te branden. De eindtemperatuur blijkt 80C te zijn. De invloed van het glas en de omgeving is verwaarloosbaar. Bereken hoeveel water je in de melk deed. Het hete glas melk staat op tafel. De temperatuur in de kamer wordt op 20C gehouden Schets de grafiek van de temperatuur als functie van de tijd en verklaar het verloop van de grafiek. C A B Leg uit welke van de mogelijkheden stroming, geleiding en straling in aanmerking komen om verantwoordelijk te zijn voor de afkoeling. SOEPPAN Een soeppan van 2,1 kg roestvrij staal bevindt zich in temperatuurevenwicht met een daarin gelegd blok diepvriesbouillon. De temperatuur ervan is 18C. Hoewel de kwaliteit van de bouillon niets te wensen over laat, beschouwen we de 0,80 kg zware blok bouillon als bevroren water. We zetten de pan op een elektrische plaat met een vermogen van 1,50 kW. Bereken de minimale tijd die ik wachten moet, alvorens ik verwachten mag dat de bouillon een temperatuur van 80C heeft bereikt. Als je in de berekening meent een en ander te moeten veronderstellen, vermeld je dat. Vervolgens schenk ik 250 g bouillon van 80C over in een porseleinen soepkom, t = 20C en m = 300 g. Bereken de eindtemperatuur, als verliezen aan de omgeving zouden mogen worden verwaarloosd. C Mijn soepkommen zijn voorzien van een temperatuursensor aan de onderkant. De temperatuur wordt geregistreerd vanaf het moment dat ik de bouillon erin begin te schenken, totdat het moment dat de bouillon is afgekoeld. Schets de temperatuur-tijd-grafiek, zoals je die verwacht en licht deze toe. D We willen die grafiek in een model reconstrueren en daarna toetsen door de bouillon in een plastic kom van dezelfde grootte en vorm te gieten. We voeren in het model de soortelijke warmte en de massa van het plastic in, waar die van porcelein stonden. Noem 2 andere factoren waarmee je rekening zou willen houden, omdat ze dan anders zijn. A SKILIFT Een skilift in Rauland, Noorwegen, werkt met een opgenomen vermogen van 132 kW als hij per uur 1060 skiërs van gemiddeld 75 kg omhoog trekt. De skiërs komen dan na een tocht van 1500 m op een hoogte van 220 m boven het vertrekpunt. Bereken het rendement van de skilift in deze situatie. Op het aandrijfwiel ligt op een mooie winterdag enige sneeuw. De temperatuur van de lucht komt de hele dag niet boven 0 C. Toch ontstaan aan de onderkant van het aandrijfwiel ijspegels. Een leerling komt door deze skilift op het idee om een PWS-project te maken, waarbij onderzocht wordt in hoeverre warmte vanuit het midden van een schijf de temperatuur van zo’n schijf laat stijgen. De winter is voorbij en de leerling moet werken in een omgeving met een constante temperatuur van 20C. De nevenstaande opstelling wordt gebouwd. In de opgave kun je de afmetingen van het asje zelf verwaarlozen. Het betreft een schijf ijzer van 1,45 kg met een dikte van 2,0 mm en een begintemperatuur van 20C. Bovendien een vijftal temperatuursensoren van verwaarloosbare warmtecapaciteit. B C D Bereken de diameter van de schijf. WARMTE Aan de ijzeren schijf wordt 7,00 kJ warmte toegevoegd via het asje. Bereken de temperatuur die de schijf zou krijgen, als van warmte-afgifte aan de omgeving geen sprake zou zijn. De leerling voert de proef echt uit en meet direct nadat in 5 minuten die 7,00 kJ zijn toegevoegd via de sensoren langs een straal van de schijf de temperatuur. Schets in bijgaand assenstelsel de grafiek van de temperatuur van het ijzer als functie van de afstand tot het midden van de schijf. Licht je grafiek toe. GASSEN Een klasgenootje dacht aan heel andere zaken, zoals de hoeveelheid zuurstof in de longen, onder in het dal en 220 m hoger. We veronderstellen het volgende: De longinhoud is 5,0 liter en bestaat voor 20% uit zuurstof. De temperatuur in de longen is constant 37 °C en de druk is gelijk aan de druk in de omgeving. De luchtdruk en temperatuur beneden in het dal zijn resp. 1013 mbar en - 4,0 °C, maar boven 980 mbar en - 13 °C. E Bereken de hoeveelheid zuurstof in de longen, uitgedrukt in mol, naar keuze beneden òf boven. A Uitwerking: Nuttig is het naar boven brengen van de mensen. B C D E Pnuttig Perin mgh / t 1060 75 9,8 220 0,36 3 132 10 132 10 3 3600 , dus 36 % m = × V 1,45 = 7,87103 × V V = 1,84104 m3. V = A × h 1,84104 = A × 0,002 A = 0,092 m2 = r2 r = 0,17 m d= 34 cm Q = mc T 7000 = 1,45 × 0,46103 × T T = 10,49 K T = 30,5C Aan de schets zijn een paar kenmerken. • hij start boven de 30C • hij is dalend • hij is ‘hol’ • hij komt niet onder de 20C Elk van deze punten kan worden toegelicht. • hij moet boven de 30C starten, omdat de gemiddelde temperatuur zonder verliezen op 30C uit zou komen, maar de warmte tijd nodig heeft om de buitenrand te bereiken. De in die tijd toegevoegde warmte komt ten goede aan de binnenrand. Het sleutelwoord hierbij is gemiddelde. • Vanwege de geleiding zal het naar buiten toe steeds kouder worden. • Naar buiten toe moet er ook steeds meer ijzer worden verwarmd. De temperatuurstijging zal dus steeds geringer zijn. • De omgeving heeft een temperatuur van 20C. Als er dan warmte wordt toegevoerd kan de temperatuur nooit onder de 20C komen. Als extra kun je nog melden dat de feitelijke grafiek lager zal liggen, zoals de streeplijn, omdat via de oppervlakte ook verlies aan de omgeving mogelijk is. Voor gassen geldt: pV = nRT. Voor in het dal geldt als hoeveelheid gas. pV 1013 10 2 5 10 3 n 2,1 10 4 mol RT 8,31 (273 4,0) Daarvan is 20% zuurstof, zodat het antwoord wordt: in het dal 0,039 mol. Op analoge wijze boven: 0,038 mol. THERMOSKAN MET IJS In een thermoskan bevindt zich 40 g ijs van 10 C. De thermoskan heeft een warmtecapaciteit van 45 J/K. Bereken hoeveel water van +37 C we minimaal moeten toevoegen om te bereiken dat alle ijs smelt. Uitwerking: Alle ijs smelt. Dan moet het ijs(a) en de thermoskan(b) worden opgewarmd en moet het ijs smelten(c). Die energie komt vrij bij het afkoelen(d) van het water. mcT(a) + kT(b) + m × sm.w(c) = mcT(d) 0,040 × 2200 × 10 + 45 × 10 + 0,040 × 334103 = m × 4180 × 37 m = 95 gram A WATER In een glas van 170 g staat al een tijdje 100 ml water van 15 C. Zoals je weet, is de omgeving 20 C en zal het water in temperatuur gaan stijgen. Bereken hoeveel energie het glas water uit omgeving zal opnemen. B We volgen het temperatuurverloop van het water via een sensor met de computer. Schets de temperatuur-tijd-grafiek van het water van 15 C tot 20 C en licht de grafiek toe. C D Ieder voorwerp zendt temperatuurstraling uit. Dus ook het water in het glas. Bereken de golflengte waarin de meeste straling door het water wordt uitgezonden, waarbij je veronderstelt dat het water een zwarte straler is. Door het uitzenden van die temperatuurstraling zou je kunnen verwachten dat het voorwerp afkoelt. De temperatuur neemt echter toe van 15 tot 20 C. Leg uit waarom het voorwerp toch in temperatuur stijgt. WARMTEBRON Een warmtebron van 16 kW verwarmt een ijzeren ketel van 20 kg gevuld met 40 L water van 14 C Bereken de temperatuurstijging in 1 minuut als er geen warmte verloren gaat. Antw: 5,4 C WARMTELEER en GASSEN Bij een experiment plaatst men een glazen buis kwikdamp in een oven. De oven wordt verwarmd door een verwarmingsspiraal van 400 W. Zie de nevenstaande tekening. Op t = 0 is de temperatuur van de oven met inhoud gelijk aan die van de omgeving: 20 C. Op t = 0 wordt de verwarmingsspiraal ingeschakeld. De temperatuur in de oven heeft overal dezelfde waarde. Deze temperatuur wordt gemeten. Het meetresultaat zie je in de grafiek op het antwoordblad. De temperatuur stijgt steeds minder sterk. De verwarmingsspiraal wordt automatisch uitgeschakeld zodra de temperatuur te hoog wordt en weer ingeschakeld zodra de temperatuur te laag wordt. De temperatuur schommelt om een waarde van 180 C. A B C D E F Beredeneer waarom de temperatuur steeds langzamer toeneemt. Bij het ontwerpen van het apparaat ging men uit van een temperatuurstijging van 0,5°C/s. Bepaal met behulp van de temperatuur-tijd-grafiek de feitelijke temperatuurstijging van de oven per seconde onmiddellijk na t = 0. Bereken hoeveel warmte nodig is om de oven met inhoud 1,0 C in temperatuur te doen stijgen, als we afzien van de warmteuitwisseling met de omgeving. Bepaal de hoeveelheid warmte die de oven per seconde aan de omgeving afstaat bij een oventemperatuur van 180 C. De inhoud van de oven is 3,00 dm3. Bij een eerste test bevindt zich in de oven uitsluitend lucht met een druk van 1,0 bar. Bereken hoeveel mol lucht in dat geval ontsnapt tijdens het verwarmen van 20 C tot 180 C. Beredeneer of door de aanwezigheid van de glazen buis met kwikdamp er meer of minder lucht ontsnapt tijdens dat verwarmen. A B C D Uitwerking: Dit soort redeneringen komen veel voor en moet je goed snappen. T is een gevolg van Q via Q = mc × T of algemener Q = k × T. Hierin is Q de netto-energietoevoer. In ons geval dus de energie toegevoerd door de verwarmingsspiraal verminderd met de energie afgevoerd vanwege lekkage. Deze lekkage is evenredig met het temperatuurverschil, zodat Q = (Pverwarming Plek) × t, waarbij t de betreffende tijdspanne is. De redenering ziet er dan als volgt uit: De temperatuurstijging per seconde is niet constant. Je moet dus een raaklijn tekenen om te weten hoe het op t = 0 is. Mijn raaklijn loopt van (0 min; 20 C) naar (8 min; 200 C). Dat betekent een temperatuurstijging van 180 C in 8 min = 480 s, dus 0,38 C/s. Voor deze 0,375 C is 400 J nodig. In het begin is immers T = 0 en is er dus geen lek. Per graad Celsius betekent dit 400/0,375 = 1067 J. Gelet op het aantal significante cijfers: 1,1 kJ. Uit de grafiek kun je afleiden dat na het bereiken van de 180 C, de verwarming de halve tijd aan staat. Op basis daarvan kun je afleiden dat het lek 200 J/s bedraagt. Je kunt ook de helling van de temperatuurdaling vaststellen via een raaklijn: 0,23 C/s. Maar 0,23 C komt overeen met 0,23 × 1066 J = 245 J. Dus 0,25 kJ/s is het lek. Ten slotte zou je ook nog de temperatuurstijging kunnen bepalen op t = 9 min. Je kent dan Pnetto en daarmee ook Plek. Koper geleidt beter dan ijzer. Om dit te onderzoeken wordt een opstelling gemaakt. A GELEIDING Je kunt het geleidingsvermogen, uitgedrukt in de warmtegeleidingscoëfficiënt , onderzoeken via dQ A T dt d In deze formule stelt Q de hoeveelheid warmte voor, t de tijd, A de oppervlakte waar de warmte door heen gaat, T het temperatuurverschil en d de afstand die overeenkomt met T. Leid uit de gegeven formule de SI-eenheid van af. Let op: Ik wil de afleiding stap voor stap zien. Het gaat dus niet om de uitkomst zoals je die in BINAS kunt vinden; jouw antwoord zal zelfs anders zijn! De experimentele opstelling is hiernaast te zien. De beginsituatie: Twee gelijke bollen A en B, elk bestaand uit 1,00 dm3 massief zilver en beide 100 C, zijn door middel van een staaf metaal, resp. ijzer en koper, van 0,60 m lengte en een doorsnede van 0,500 cm² verbonden met een bak met smeltend ijs. B C D E Het experiment: Op t = 0,00 s wordt het geheel thermisch geïsoleerd van de omgeving en zal de temperatuur van de bollen gaan dalen. Je mag er van uit gaan dat de bovenkant van de staaf dezelfde temperatuur heeft en houdt als de bol en het andere einde van de staaf de temperatuur heeft en houdt van het smeltende ijs. Bereken hoeveel ijs er minimaal in bak moet zitten om ook in de eindsituatie nog ijs te bevatten. Schets in één assenstelsel hieronder het temperatuurverloop van beide bollen als functie van de tijd. Licht je schets toe. Schets in één assenstelsel hieronder de warmtestroom door beide staven als functie van de tijd. Licht je schets toe. Zou je de formule kunnen geven/afleiden die behoort bij de grafiek van vraag C? a. b. Uitwerking: antwoord: J·s-1·m-1·K-1 warmte die vrijkomt uit de beide bollen: -massa bollen: m = ×V = 10,50·103 × 2,0010-3 = 21 kg -Q = mc×T = 21 × 386 × 100 = 8,106105 J warmte die vrijkomt uit de ijzeren staaf: -volume van de staaf = 30 cm3 -massa staaf: 7,87·103 × 3010-6 = 0,2361 kg -Q = mc×T = 0,2361 × 460 × 50 = 5,43 × 103 J warmte die vrijkomt uit de koperen staaf: -massa staaf: 8,96103 × 30·10-6 = 0,2688 kg -Q = 0,2688 × 387 × 50 = 5,20 103 J Qaf = 8,2123·105 J Qop = massa ijs × 334103 J minimale hoeveelheid ijs: 8,2123105 / (334103)= 2,46 kg c. toelichting: koper heeft een 4,85 keer zo grote warmtegeleidingscoëfficiënt en zal dus veel sneller de warmte geleiden bol koelt veel sneller af! d. toelichting: de warmtestroom door het koper is aanvankelijk 4,85 keer zo groot als die door het ijzer, maar zal wel veel sneller afnemen. Het oppervlak onder beide grafieken moet gelijk zijn (dat is namelijk de afgevoerde warmte!). B a b c a b c Warmte Deze opgave speelt zich af in een goed geïsoleerde vacuümruimte. De invloed van deze ruimte kun je in dit experiment verder verwaarlozen. In de ruimte bevinden zich twee voorwerpen met een warmtecapaciteit van 10 J/K. De ene is matzwart en de ander matwit. Beide hebben een temperatuur van 20 C. Midden tussen deze twee voorwerpen in wordt door een gloeidraad in korte tijd 20 J energie afgegeven in de vorm van straling. Na 60 s blijkt een evenwichtssituatie te zijn ontstaan. De temperatuur van beide voorwerpen verandert dan niet meer in de 2 uur die we ter afronding nog meten. Leg uit waarom alleen de straling interessant is. Schets het temperatuurverloop van het zwarte voorwerp als functie van de tijd in het gegeven assenstelsel. Schets met een andere kleur het temperatuurverloop van het andere voorwerp in hetzelfde assenstelsel. Geef een toelichting bij deze grafiek, zodat de achtergrond waarom je hem zo getekend hebt voor ons duidelijk is. Uitwerking: Voor geleiding en stroming heb je moleculen nodig. Aangezien het om een vacuumruimte gaat, spelen die geen rol. Er komt 20 J beschikbaar voor twee voorwerpen van elk 10 J/K. Als alle energie naar een van de twee gaat, zal die 2 K in temperatuur stijgen. Uiteindelijk zullen beide dezelfde temperatuur krijgen. Dan pas is er een evenwicht bereikt. Beide bereiken dus een temp. van 21 C. In het begin zal het zwarte voorwerp de meeste energie opnemen en dus het sterkst in temperatuur stijgen. Hij gaat dan echter ook sterker stralen dan de witte en draagt zo zijn 'overschot' aan energie over aan de witte. LAMP Volgens de fabrikant van een lamp heeft deze een opbrengst van 15% aan zichtbaar licht en is de rest te omschrijven als warmteverliezen. De lamp heeft een opgenomen elektrisch vermogen van 20W en laten we 10 minuten branden, ondergedompeld in een glazen bak met 100 g water. Dan schakelen we de lamp uit. De warmtecapaciteit van het glas van de bak is 60 J/K. De warmtecapaciteit van de lamp wordt vooral bepaald door zijn 13 g kwartsglas. Bereken welke temperatuurstijging van het water je moet verwachten, als je alle storende de effecten, zoals absorptie van het zichtbare licht door water, massa van de aansluit- en gloeidraden en warmte-afgifte aan de omgeving verwaarloost. THERMOSFLES In een thermosfles met een warmtecapaciteit van 160 J/K bevindt zich water van 20C. Hierin brengen we 40 g ijs van - 5C. Neem aan dat er geen warmtecontact is met de omgeving. Het blijkt dat de eindtemperatuur +3C is. Bereken hoeveel water er in de thermosfles zat. Uitwerking: warmte wordt afgestaan door de thermoskan en het water: thermos: Q = k·T = 160·17 = 2720 J water: Q=mc·T = m·4,18·103·17 J warmte wordt opgenomen door het ijs: van -5 naar 0: Q=mc·t=40*2,2*5 = 440 J smelten: Q = 40 *330 = 13360 J van 0 naar 3: Q=mc·t=40*4,18*3 = 502 J samen: 14302 J Qop = Qaf: 14302 = 2720 + m·4,18·103·17 m = 0,16 kg. ROESTVRIJ STAAL Als je een roestvij stalen pan met kokende soep op een roestvrij-stalen aanrecht plaatst en 2 minuten later weer terug zet op het fornuis, kun je heel nauwkeurig met je hand op het aanrecht voelen waar de pan gestaan heeft en zelfs hoe groot hij was. Beredeneer welke conclusies je uit de beschrijving van de proef kunt trekken. Uitwerking: Let op dat je conclusies trekt uit de beschrijving en niet met een algemeen verhaal komt. Over het algemeen zal bij een pan met kokende soep, de soep de energie van de pan krijgen en niet omgekeerd. Uit de warme plek op het aanrecht kun je afleiden dat energie is overgedragen van pan naar aanrecht. Uit het feit dat het staal op staal is, kun je afleiden dat het via contact en dus geleiding gaat. stroming is uitgesloten. staal is immers een vaste stof. Uit het feit dat het een welomschreven plek is die warm is, ondanks het feit dat al 2 minuten lang een hete pan erop stond, leid je af dat roestvrij staal een slechte geleider is. Dat het aanrecht toch warm is, komt door het grote contactoppervlak en niet door goede geleiding. Glimmend staal straalt niet goed. Dat kun je overigens niet uit de tekst van de opgave concluderen. KOKEND WATER Bij snelkokende rijst moet je de gewenste hoeveelheid rijst in kokend water doen. Al je water kookt en je wilt het water aan de kook houden, ook als je de rijst er nog niet indoet, moet je het vuur aanlaten. Je voert dus constant energie toe. Leg uit wat er met de toegevoerde energie gebeurt. Uitwerking: Het gaat erom dat er energie moet worden toegevoerd om het water aan de kook te houden. Deze energie wordt gebruikt voor twee doeleinden: om te beginnen zal door het grote temperatuurverschil met de omgeving warmte 'verloren' gaan. Als je die niet aanvult zakt de temperatuur onder de 100 C en kookt het water niet meer. Verder is voor het koken zelf energie nodig. De afstand tussen de moleculen wordt zeer vergroot, de potentiële energie t.g.v. de vanderwaalskracht neemt sterk toe en die energie, de zogenaamde verdampingswarmte, moet eveneens worden toegevoerd. a. b. c. THERMOSKAN In een thermoskan met een warmtecapaciteit van 100 J/K bevindt zich 120 ml water van 15C. We voegen hieraan een blok ijs van 60 g toe met een temperatuur van -10C. We verwaarlozen de warmte-uitwisseling met de omgeving. Bepaal door een berekening of alle ijs smelt. Bereken hoeveel ijs nodig zou zijn om +10C als eindtemperatuur te krijgen. Hoe voorzichtig we het ijs ook in de thermoskan laten zakken, het water zal toch enigszins gaan stromen. Leg aan de hand van een schets uit hoe je je die stroming voorstelt en waarom die er zo uitziet. Onder water tegen de binnenwand van de thermoskan is een temperatuur'voeler' bevestigd. d. Schets het temperatuurverloop dat 'gevoeld' wordt als functie van de tijd en leg uit waarom de grafiek zo verloopt. TWEE COMPARTIMENTEN Een cilinder wordt door een zuiger in twee even grote compartimenten verdeeld. De zuiger is als wrijvingsloos te beschouwen. In beide compartimenten bevindt zich stikstofgas. Aan de ene kant heerst een temperatuur van 10C, aan de andere kant een van 120C. De druk is aan beide zijden gelijk, evenals het volume. Uiteindelijk krijgen beide ruimten dezelfde temperatuur. Bereken hoe de zuiger de totale ruimte dan verdeelt. ZONNEBOILER Op het dak van een huis bevindt zich een zonnecollector. Hiermee wordt water uit een voorraadvat (boiler) verwarmd. Zie de figuur waarin een dergelijke installatie sterk vereenvoudigd is weergegeven. Het geheel is zo goed geïsoleerd dat de warmte die aan de omgeving wordt afgestaan te verwaarlozen is. a. b. Het warmtetransport in het systeem vindt plaats ten gevolge van het stromen van het water. Op een bepaalde dag wordt gestart met koud water van 15C in collector en boiler. De zon schijnt die dag 5,5 uur, waarbij met een gemiddeld vermogen van 700 W warmte aan het water wordt overgedragen. In het systeem bevindt zich 80 liter. Geef in de figuur met pijlen de stroomrichting van het water aan en verklaar je antwoord! Bereken de eindtemperatuur van het water in de boiler. Op een andere dag valt op de collector een hoeveelheid zonnestraling met een gemiddeld vermogen van 2,0 kW. Gedurende een periode van 30 minuten draagt de collector 1,4 MJ warmte aan het water over. Bereken het rendement (nuttig effect) van de collector. c. d. a b. c. d. De zonnecollector is in essentie niet meer dan een zwart geschilderde radiator. Leg uit op welke wijze jij de collector zou isoleren en waarom je dat zo zou doen. De beantwoording kan heel erg uitgebreid, maar houd de tijd in de gaten! Misschien iets om kort te beantwoorden en later op terug te komen. Uitywerking: In de collector ontstaat warm water. Dat warme water heeft een kleinere dichtheid dan het koude en wordt door de 'opwaartse kracht' omhoog gedreven. E = P·t en Q = mc·T E = 700·5,5·3600 = 1,386·107 J 1,386·107 = 80·4180·(T - 15) Teind = 56 C Het rendement is 39%. De straling moet het werk doen, dus daartegen isoleren we niet. Over golflengten weten we nog niets dus daar houden we geen rekening mee. We moeten voorkomen dat door geleiding of stroming warmte verloren gaat. Pak de collector in in een dubbelglas doos. Het glas en de stilstaande lucht isoleren door voorkomen van geleiding. De dunne luchtlagen voorkomen stroming. Thermosfles In een thermosfles met een warmtecapaciteit van 200 J/K zit water van 10C. Om 14.25 h dompelen we hierin 50 g ijs van - 18C. Na een uur blijkt het slechts voor de helft gesmolten te zijn en concluderen dat de kwaliteit van de thermosfles bijzonder goed is. Bereken hoeveel water er in de thermosfles zit om 15.25 h. In de thermosfles zit het oorspronkelijke water plus het smeltwater. In de thermosfles zit uiteindelijk water én ijs en dus is de temperatuur 0C. warm: thermosfles: 200 J/K tbegin = 10 C teind = 0 C Q = k·T=200·10=2000J water: c = 4180 J/K·kg t = 10 C Q = mc·t We kennen m, zodra we Q kennen. koud: ijs: c = 2200 J/K·kg m = 50·10-3 kg tbegin = - 18 C teind = 0 C De helft smelt! Q = Qopwarmen + Qsmelt = 0,050·2200·18 + 0,025·334·103 = 10330 J Van de 10330 J komt 2000 J van het afkoelen van de thermosfles. Er komt dus 8330 J van het oorspronkelijk aanwezige water. 8330 = m·4180·10 m = 0,199 kg. Na het smelten zit er in 199 + 25 = 224 g water. a. b. TWEE VATEN Je ziet in de tekening enkele gegevens van vat A. De druk boven de zuiger noch de temperatuur van het gas in A veranderen tijdens dit proefwerk. Leid uit de gegevens af hoe groot de oppervlakte van de 1,0 kg-zware zuiger is. Bereken het hoogteverschil tussen de kwikniveaus in de manometer. Het gasvolume in de manometer is verwaarloosbaar. Bereken hoeveel mol gas zich in vat B bevindt; de gegevens staan in de tekening. c. d. a b. c. d. De zon gaat schijnen en de temperatuur van B stijgt. Bereken bij welke temperatuur het hoogteverschil tussen de kwikniveaus is verdwenen. Antwoorden: De zuiger zorgt voor een overdruk van 0,1 bar = 1·104 Pa. A=9,8×10^-4 m² 1 cm Hg ≡ 1333 Pa en p = 0,1 bar = 1·104 Pa = 1·104 / 1333 = 7,5 cm Hg n = 0,082 mol Ook rechts moet dan de druk 1,1 bar geworden zijn. T = 322,3 K t = 49 C a. b. a b BALLON Een glazen ballon is voorzien van een glazen buisje en opgehangen in een geïsoleerde doos. De combinatie ballon-buisje heeft een warmtecapaciteit van 104 J/K. De glazen ballon is gevuld met 1,26 g lucht van 20C. Deze lucht is afgesloten door een druppel kwik in het buisje. Het uiteinde van het buisje staat in open verbinding met de buitenlucht. Het kwik heeft een massa van 4,0 g. Het volume van de afgesloten lucht is 1,046 dm3. We sturen even een stroom door de verwarmingsspiraal, waardoor aan de lucht 1,30 J warmte wordt afgegeven. Bereken de volumetoename die daarvan het gevolg is. Omdat de lucht al gauw genoeg warmte aan de omgeving afgeeft, neemt het volume weer af. Zal de lucht de meeste warmte afgeven aan het kwik of aan het glas? Beredeneer je antwoord. Laat bij de redenering uitkomen of je aan stroming, geleiding of straling denkt. Uitwerking: Voor de lucht geldt: De druk verandert niet omdat de druk binnen dezelfde is als buiten dankzij de kwikdruppel in het horizontale buisje. Voor de volumeverandering moeten we het nieuwe volume kennen en volgens bovenstaande formule dus de temperatuur. De nieuwe temperatuur hangt af van de temperatuurstijging en dus gebruiken we weer Q = mct dus 1,30=1,2610-3 × 1,00103 × t dus t = 1,03 C 1,046 V2 V2 1,0497 dm3 V V2 V1 9,7 cm 3 273 20 273 20 1,03 Straling: deze zal voor het kwik geen rol spelen, daar kwik als metaal spiegelt en niet reflecteert. Voor zover straling een rol zou spelen gaat de straling naar het glas. Stroming: de warmere lucht zal stijgen en dus geen energietransport naar het kwik. Geleiding: Omdat het contact een rol speelt, zal de warme lucht vooral bovenin maar ook in de rest van de bol door de veel grotere oppervlakte zijn warmte afstaan aan het glas en niet aan het kwik. OVERDRACHT Een hoeveelheid koper heeft een warmtecapaciteit van 80 J·K-1 en een temperatuur van 80C. Een hoeveelheid ijzer heeft een warmtecapaciteit van 20 J·K-1 en een temperatuur van 20C. Bereken de eindtemperatuur als we beide hoeveelheden met elkaar in contact brengen en er geen warmteverlies is. Uitwerking: De warmte die het koper afgeeft, wordt opgenomen door het ijzer. We gebruiken de definitie van warmtecapaciteit: Q = k·T en noemen de eindtemp. Te. Qkoper = Qijzer 80·(80 - Te) = 20·(Te - 20) Te = 68 C = 341 K Afkoeling Terwijl vroeger voor de buizen van de centrale verwarming vooral ijzeren buizen werden gebruikt, zie je tegenwoordig veel koperen buizen waarvan de doorsnede is getekend. Een CV-installatie levert heet water en dit wordt rondgepompt. We bestuderen een stuk buis, geheel gevuld met stromend water van 60C; de buis bevindt zich in een ruimte die een constante temperatuur heeft van 10C. Op t = 0 s stopt de circulatie en staat het water stil. Voor de volgende vragen bekijken we steeds een stuk buis van 1,00 m lengte. a. b. c. d. e. Hierboven is het temperatuurverloop getekend als functie van de afstand tot het midden van de buis op t = 0 s. Door afkoeling bereikt de buitenkant na 22,5 minuten een temperatuur van 30C. De ruimte eromheen blijft een temperatuur van 10C houden. Bereken het door de buis afgegeven vermogen op t = 22,5 minuten. Hierbij kun je gebruik maken van het volgende gegeven: Het vermogen P, aan de omgeving afgegeven door een buis van 1,00 m lengte met een diameter d bij een temperatuurverschil T, is te berekenen met P = 40·d·T. Schets op het antwoordvel het verloop van de temperatuur aan de buitenkant als functie van de tijd. Als de temperatuur aan de buitenkant daalt, zal dat ook erin gebeuren. Getekend zijn op het antwoordvel 4 grafieken A, B, C en D. Misschien is er wel een goede bij, misschien niet. Beredeneer van elke grafiek, indien je meent dat die grafiek om een natuurkundige reden niet mogelijk is, waarom die grafiek niet kan. Je mag bij iedere grafiek slechts één reden noemen. Een opmerking als 'er kan geen knik in zitten' of 'er moet een knik in zitten' is niet voldoende. De totale warmte-afgifte van de buis met water komt voor een deel van het koper en voor een deel van het water. Bereken de warmtecapaciteit k van 1,00 m koperbuis met water. Bepaal de eenheid van de steilheid in de (T,t)-grafiek en leg met de behulp van deze eenheid en die van P en k het verband uit tussen die drie grootheden: steilheid, P en k. a. b. c. d. e. Uitwerking: P= 40·d·T = 40·0,015·(30-10) = 12W. Zie rechts. A: Het temperatuurverschil over 1 mm koper is sterker dan over 1 mm water. Dat betekent dat water beter geleidt dan koper, en dat is niet zo. Zie warmtegeleidingscoëfficiënt in Binas. B: Dit is de goede. Door de goede geleiding van het koper heb je op deze schaal geen meetbaar temp.verschil over de 1 mm koper. C: Er is geen knik bij de overgang water-koper. Dat betekent dat beide even goed de warmte geleiden en dat is niet zo. Zie A. D: Hetzelfde argument als bij C. k = (mc)water + (mc)koper = (·V·c)water + (·V·c)koper. Vwater = r2·h = ·0,00652·1,00 = 1,33·10-4 m3 Vkoper = rbuiten2·h - rbinnen2·h = ·0,00752 - ·0,00652 = 0,44·10-4 m3. k = 998·1,33·10-4·4,18·103 + 8,96·103·0,44·10-4·387 = 555 + 153 = 7,1·103 J·K-1. rc = T/t en dus heeft de steilheid rc in de grafiek als eenheid: C/s. Het vermogen P heeft als eenheid: J/s en k: J/C. Dan moet rc = constante·P/k, immers SCHAALFACTOR Mensen en dieren zijn er in soorten en maten. Denk aan een baby in vergelijking met een volwassene en een bloot pekineesje in vergelijking met een goed aangeklede ijsbeer. We willen de warmtehuishoudingen vergelijken. Om een start te maken gaan we wat vereenvoudigingen aanbrengen. In ons model wordt elke soort voorgesteld door een cilinder met straal r, en een as met lengte l. Verder beschouwen we het wezen als puur bestaande uit water opgesloten in genoemde cilinder met gelijke oppervlakeigenschappen, zodat de warmte-uitwisseling evenredig is met de oppervlakte. Wat wiskundige gegevens van cilinder: Volume r2l ; oppervlakte 2r2 + 2rl a. b. c. d. Bereken de warmtecapaciteit van een volwassene met r = 0,15 m en l = 1,25 m. Bereken de verhouding tussen de warmtecapaciteiten van de volwassene en een baby met r = 0,075 m en l = 0,25 m. In een koudere omgeving zal afkoeling optreden. Stel je voor dat beiden op t = 0 in een bad komen met water van 30 C. Bereken de verhouding van de afgestane vermogens van beiden op t = 0. Als de vitale organen een te lage temperatuur krijgen is dat gevaarlijk: het gevaar van onderkoeling. Leg uit — met natuurkundige argumenten — voor wie van beiden het gevaar van onderkoeling het grootst is. STOFEIGENSCHAPPEN In een warmtewisselaar wordt een koude stof in warmtecontact gebracht met een warme stof. De energie-uitwisseling vindt via geleiding plaats. In deze opgave gaat het om koud water dat door buizen stroomt. Deze buizen bevinden zich in een bad met gesmolten paraffine op zijn smeltpunt van 325 K. Bereken hoeveel paraffine moet stollen om 80 liter water van 15C te verwarmen tot 37C. Uitwerking: De warmte die vrijkomt bij het stollen = warmte nodig voor opwarmen. 146,5×103 × massa = mc×t = 80 × 4,18 × 103 × (37 - 15), dus massa paraffine = 50 kg. BALLON De helium in een ballon heeft een volume van 1,00103 m3, een temperatuur van 20C en een druk van 1040 mbar. Bereken de massa en de dichtheid van de helium in die ballon. De volgende vraag wordt als te moeilijk ervaren bij mijn leerlingen. De ballon wordt losgekoppeld, gaat de lucht in en wint dus aan zwaarte-energie en kinetische energie. We vergelijken de energie van de ballon op de grond met die op 50 m hoogte. Je kunt er van uit gaan dat de eigenschappen volume, temperatuur en druk op 50 m hoogte nog niet significant veranderd zijn. Leg uit hoe het met de wet van behoud van energie zit bij het vergelijken van deze twee posities. Hierbij moeten de ter zake doende energievormen worden genoemd en welke kracht arbeid verricht. Vergeet niet te vermelden waar die kracht op werkt. Uitwerking: a pV 1,040 105 1,00 103 n 42690 mol RT 8,3145 293 . De molaire massa van helium is 4,003 g. De massa in de ballon is 42690 × 0,004003 = 171 kg b m 170,9 0,171 kg / m 3 V 1,00 10 3 . De dichtheid De bedoeling van de vraag is dat je vanwege de toenemende kinetische én zwaarte-energie afvraagt, waar die energie dan wel vandaan komt. Vanwege de keuze van heliumballon, speelt de chemische energie geen rol. Dat zou bij een waterstofballon, waarbij de waterstof verbrand werd nog gekund hebben. Maar dan zouden p, V en T niet gelijk gebleven zijn. Ik bespreek twee opties, die samenhangen met een andere keuze van ‘het systeem’. Keuze 1. Neem de ballon als systeem. Maak een tekening met ballon en erop werkende krachten. Fomhoog > Fz! Hierop werken de zwaartekracht en de opwaartse kracht volgens de wet van Archimedes. De ballon gaat omhoog, omdat de opwaartse kracht groter is dan de zwaartekracht. In de vorige opgave heb je al berekend dat de dichtheid van de helium veel kleiner is dan de zwaartekracht. De nettokracht verricht de arbeid. Warmte-ontwikkeling t.g.v. wrijving verwaarlozen we. De regel luidt dan: W = Ekin. Het is geen ‘gesloten systeem’ en de wet van behoud van energie geldt dus niet. Keuze 2. Maak een tekening en realiseer je dat waar de ballon zit, geen lucht kan zitten. Vergelijke je begin en eind, dan gaat de ballon omhoog, maar een luchtbel, de stippellijn, naar beneden. Denk aan een lift en zijn contragewicht. Als je neemt de ballon, de luchtbel en de aarde , dan heb je een gesloten systeem. Omdat je de aarde erbij neemt, kun je het hebben over zwaarte-energie i.p.v. over ‘arbeid door de zwaartekracht’. Er geldt (Ez, bel + Ez,ballon + Ek,bel + Ek,ballon )begin = (Ez, bel + Ez,ballon + Ek,bel + Ek,ballon)eind De energie in wervelingen van de lucht worden buiten beschouwing gelaten. Bij het begin stellen we de termen met kinetische energie erin gelijk aan nul. De zwaartekracht op de ‘luchtbel’ die naar beneden gaat, verricht meer positieve arbeid dan de zwaartekracht op de ballon aan negatieve arbeid verricht. Dat is de ‘energiepomp’. In de eenvoudigste vorm: ( Ez, bel ) start = ( Ez, ballon + Ekin, ballon ) eind. Het verschil in zwaarte-energieën = arbeid door de zwaartekracht = kinetische energie ballon Pas op: sommigen willen aan energie een richting toekennen. Dat is niet juist. Energie is een scalar, geen vector. STOFEIGENSCHAPPEN. Als isolatiemateriaal voor woningbouw denkt men i.p.v. ‘piepschuim’ en steenwol in de spouw van de muren gebruik te gaan maken van korreltjes ‘was’ -- denk aan een soort bijenwas. Een 3 cm dikke laag met was-korrels zou dezelfde isolatie-eigenschappen hebben als een 40 cm dikke betonlaag. De was smelt bij 25C, heeft een smeltwarmte van 151103 J/kg en een dichtheid van 1,26103 kg/m3. Het volume van de isolatielaag bestaat voor 60% uit die was. Bereken hoeveel warmte per m2 kan worden opgenomen door het smelten van de was. Het volume per m² is 0,03 × 1 = 0,03 m³ isolatie. Dit bestaat voor 60% uit was, dus er zit 0,60 × 0,03 = 0,018 m³ was in. m m 1,26 10 3 m 22,68 kg V 0,018 De smeltwarmte is 151103 J/kg. Er kan dus 22,68 × 151103 = 3,4106 J worden opgenomen tijden het smelten. STOFEIGENSCHAPPEN In een warmtewisselaar wordt een koude stof in warmtecontact gebracht met een warme stof. De energie-uitwisseling vindt via geleiding plaats. In deze opgave gaat het om koud water dat door buizen stroomt. Deze buizen bevinden zich in een bad met gesmolten paraffine op zijn smeltpunt van 325 K Bereken hoeveel paraffine moet stollen om 80 liter water van 15 C te verwarmen tot 37C. Uitwerking: De warmte die vrijkomt bij het stollen = warmte nodig voor opwarmen. 146,5×103 × massa = mc×t = 80 × 4,18 × 103 × (37 - 15), dus massa paraffine = 50 kg. -STOFEIGENSCHAPPEN. Als isolatiemateriaal voor woningbouw denkt men i.p.v. ‘piepschuim’ en steenwol in de spouw van de muren gebruik te gaan maken van korreltjes ‘was’ -- denk aan een soort bijenwas. Een 3 cm dikke laag met was-korrels zou dezelfde isolatie-eigenschappen hebben als een 40 cm dikke betonlaag. De was smelt bij 25C, heeft een smeltwarmte van 151103 J/kg en een dichtheid van 1,26103 kg/m3. Het volume van de isolatielaag bestaat voor 60% uit die was. Bereken hoeveel warmte per m2 kan worden opgenomen door het smelten van de was. uitwerking: Het volume per m² is 0,03 × 1 = 0,03 m³ isolatie. Dit bestaat voor 60% uit was, dus er zit 0,60 × 0,03 = 0,018 m³ was in. m m 1,26 10 3 m 22,68 kg V 0,018 De smeltwarmte is 151103 J/kg. Er kan dus 22,68 × 151103 = 3,4106 J worden opgenomen tijden het smelten. --