vwo A/C Samenvatting Hoofdstuk 4 Kansdefinitie van Laplace aantal gunstige uitkomsten aantal mogelijke uitkomsten je mag deze regel alleen gebruiken als alle uitkomsten even waarschijnlijk zijn bij een verkeerslicht zijn de uitkomsten rood, oranje en groen niet even waarschijnlijk, want het verkeerslicht staat langer op rood dan op oranje dus P(oranje) is niet gelijk aan ⅓ bij het gooien met een dobbelsteen is elk van de 6 uitkomsten even waarschijnlijk dus P(meer dan 4 ogen) = 2/6 = ⅓ hierbij zijn 5 en 6 ogen gunstig hiermee is de kans exact berekend, bij een exact antwoord mag je niet benaderen P(gebeurtenis) = 4.1 Kansschaal 4.1 Samengestelde kansexperimenten Het gooien met een dobbelsteen is een voorbeeld van een kansexperiment. Kenmerkend voor een kansexperiment is dat de uitkomst niet van te voren vastligt. voorbeelden zijn : het gooien met een dobbelsteen en een geldstuk het gooien met 2 dobbelstenen het gooien met 3 geldstukken het kopen van 3 loten in een loterij. Het aantal gunstige uitkomsten bij een samengesteld kansexperiment met dobbelstenen of geldstukken krijg je bij : 2 kansexperimenten met een rooster 3 of meer experimenten met systematisch noteren en/of handig tellen. 4.1 Samengestelde kansexperimenten Heb je met meer dan 2 experimenten te maken, dan bereken je kansen als volgt : bereken het aantal mogelijke uitkomsten tel het aantal gunstige uitkomsten door deze systematisch te noteren en/of handig te tellen deel het aantal gunstige door het aantal mogelijke uitkomsten Zo krijg je bij een worp met 3 dobbelstenen en de gebeurtenis ‘som van de ogen is 15’ aantal mogelijke uitkomsten is 6 x 6 x 6 = 216 aantal gunstige uitkomsten is 10, namelijk 555 663 , 636 , 366 654 , 645 , 546 , 564 , 456 , 465 dus P(som is 15) = 1+3+6 216 = 10 5 = 216 108 4.1 Empirische en theoretische kansen Wet van de grote aantallen Door een kansexperiment heel vaak uit te voeren, komt de relatieve frequentie van een gebeurtenis steeds dichter bij de kans op die gebeurtenis te liggen. 1 Empirische kansen v.b. : P(meisje bij geboorte) en P(punaise met punt omhoog) empirisch betekent ‘op ervaring gegrond’ Empirische kansen krijg je door een groot aantal waarnemingen te gebruiken. Empirische kansen bereken je door relatieve frequenties te gebruiken. 2 Theoretische kansen Bij veel kansexperimenten kun je van te voren zeggen wat de kans op een gebeurtenis is. v.b. : P(6 ogen) bij een worp van een dobbelsteen is 1/6 Je gebruikt de kansdefinitie van Laplace. 3 Subjectieve kans Hoe groot is de kans dat voor 2010 je sneller loopt dan 9 seconden over de 100m. ? onmogelijk 4.2 Simuleren Door een kansexperiment voortdurend te herhalen kun je kansen schatten. Dat is echter een tijdrovend karwei. b.v. : de kans dat bij een vliegtuig de automatische piloot uitvalt Dit soort kansexperimenten gaat men simuleren (nabootsen) met de computer. Door vervolgens relatieve frequenties te berekenen, schat je kansen. De grafische rekenmachine heeft opties om toevalsgetallen te genereren. 4.2 Simuleren met de GR TI MATH-PRB-menu randInt met randInt(1,6,10) krijg je 10 gehele toevalsgetallen van 1 t/m 6 Casio OPTN-NUM-menu Intg en OPTN-PROB-menu Ran# met Intg(4Ran# + 1) krijg je 1 van de getallen van 1, 2, 3 of 4 4.2 Voorwaardelijke kans Bij een voorwaardelijke kans beperk je je tot een deelgroep je moet dan delen door de frequentie van die deelgroep. afspraak : ‘bereken de kans op ……’ rond je af op 3 decimalen Kruistabellen Heb je bij onderzoeksresultaten te maken met 2 kenmerken, dan is het verstandig de gegevens in een kruistabel te verwerken. vervolgens zijn allerlei kansberekeningen eenvoudig te maken Onafhankelijke gebeurtenissen De gebeurtenissen A en B zijn onafhankelijk als P(A onder voorwaarde B) = P(A) gebeurtenis B heeft geen invloed op gebeurtenis A onafhankelijk gebeurtenissen die niet onafhankelijk zijn afhankelijk 4.3 Combinaties is bij het kiezen van 4 dingen uit 7 dingen de volgorde niet van belang, dan spreken we van het aantal combinaties van 4 uit 7 het aantal combinaties van 4 uit 7 noteren we als 7 4 spreek uit : 7 boven 4 het aantal combinaties van 4 uit 7, dus het aantal manieren om 4 dingen te kiezen uit 7 dingen zonder op de volgorde te letten, is 7 4 4.4 Kansen en combinaties Ook bij het pakken van knikkers uit een vaas heb je met combinaties te maken. P(2r, 2w, 1b) = ? Volgens de kansdefinitie van Laplace is die kans aantal gunstige uitkomsten P(G) = aantal mogelijke uitkomsten Het aantal mogelijke uitkomsten is het aantal manieren om 5 knikkers uit de totaal 15 knikkers te pakken. 15 manieren. 5 Het aantal gunstige uitkomsten is het aantal manieren om 2r uit de 8r, 2w uit 4w en 1b uit 3b te pakken. Dat kan op Dat kan op 8+4+3=15 8 2 4 2 . 8 2 . . 4 2 P(4r, 1w, 2b) = 15 5 3 1 . manieren 3 1 2+2+1=5 ≈ 0,168 4.4 Het vaasmodel bij veel kansberekeningen kan het handig zijn het kansexperiment om te zetten in het pakken van knikkers uit een geschikt samengestelde vaas vaasmodel 4.4 De somregel Als de gebeurtenissen geen gemeenschappelijke uitkomsten hebben, dus als de gebeurtenissen elkaar uitsluiten. Hebben twee gebeurtenissen wel gemeenschappelijke uitkomsten, dan geldt de somregel niet. Zo is P(som is 4 of product is 4) niet gelijk aan, P(som is 4) + P(product is 4) want de gebeurtenissen ‘som is 4’ en ‘product is 4’ hebben de uitkomst gemeenschappelijk Voor elkaar uitsluitende gebeurtenissen G1 en G2 geldt de somregel : P(G1 of G2) = P(G1) + P(G2) 4.5 De complementregel P(minder dan 8 witte) = P(0 w) + P(1 w) + P(2 w) + P(3 w) + P(4 w) + P(5 w) + P(6 w) + P(7 w) = 1 – P(8 witte) P(gebeurtenis + P(complement-gebeurtenis) = 1 P(gebeurtenis) = 1 – P(complement-gebeurtenis) 4.5