Chemische Binding (Bonding) hfst. 8 Zumdahl Modellen Concepten Inter-moleculaire binding Intra-moleculaire binding Models (Zumdahl, end § 8.7) Models are “attempts to explain how nature operates on the microscopic level based on experiences in the macroscopic world” (Zumdahl 5th p. 370; 6th p.368; 7th p. 348). Fundamental Properties of Models - Models… • are human inventions based on incomplete understanding • and do NOT equal reality • are (over)simplifications, and are therefore often wrong. • become more complicated as they age. - We must understand the underlying assumptions in a model to prevent misuse. (Zumdahl 5th p. 372; 6th p.370; 7th p. 350). What models in Zumdahl Ch. 7? • Energy and waves • Atoms: • The Bohr model • Quantum Mechanical model • Underlying assumption/insight: • all three: quantisation of energy • Bohr vs. Quantum-Mechanical: • localised vs. delocalised electrons Chemische Binding (Bonding) (vervolg) Modellen Algemene Concepten (Ch. 8) Inter-moleculaire binding Intra-moleculaire binding Overzicht: Chemische Binding (‘Bonding’) Drie modellen voor binding: Ionbinding Covalente binding Polaire covalente binding Voorbeelden? Overview of Bonding-types (8.2) • Perspectief: • vanuit de atomen in de binding • Extremen: • Ionbinding = elektronen/lading is geheel verdeeld • Covalente binding: elektronen paar wordt perfect gedeeld • Polaire Covalent • zit daar precies tussen in, lading is enigzins verdeeld Overview of Bonding-types (8.2) • Waarom (verklaring voor dit model)?: • atomen willen “edelgas” configuratie • die vertegenwoordigen voor elk atoom een bereikbare, lagere energietoestand • Edelgasconfiguratie: • atoom: buitenste s en p orbitalen zijn gevuld met 8 elektronen (H, He: 2 elektronen) • Polair Covalent • elektronen zitten wat dichter bij het ene atoom Achieving Noble Gas Electron Configurations (NGEC) • General (not always applicable) rule: • ionic A nonmetal and representative group metal react compound. • The valence electron configuration of the nonmetal are filled to achieve NGEC. • The valence orbitals of the metal are emptied to achieve NGEC. • Two nonmetals react: they share electrons to achieve NGEC (covalent bonding or polair covalent) NGEC in a Bond: result • • • • Metal + nonmetal: • Ionic bond Two of the same non-metals: • Covalent bond Two different non-metals: • polar covalent bond Division of charge: 5th fig. 8.11; p. 368; 6th p. 366; 7th Fig. 8.12 p. 346 Bond type • Kunnen we een eigenschap van elk atoom definiëren en karakteriseren... • met een voorspellende waarde t.a.v. welke binding zich zal vormen als twee atomen A en B een binding aangaan? Electronegativity (8.2) Electronegativity: “The ability of an atom in a molecule to attract shared electrons to itself.” Difference in Electronegativity Bond Type Zero Covalent Intermediate Polar Covalent Large Ionic Polarity A molecule, such as HF, that has a center of positive charge and a center of negative charge is said to be polar, or to have a dipole moment. H-F ⎯→ δ+ δ- Polar Covalent Bond: dipole moment • Two different non-metals: • polar covalent bond • Diatomic molecule: • always • Polyatomic molecule: • depending on structure • 5th fig. 8.4; p. 355-356; 6th p. 355; 7th p. 336-337 • Examples: H2O, NH3, SO3, CH4, H2S Bond Length Definition in the context of different models? “The distance where the system energy is at its minimum” fig. 8.1: The distance between nuclei where the quantum mechanic probability function is at its maximum Concepten (vervolg) Terminologie Ionbinding Covalente binding Polaire covalente binding Ionic Bonds - When would these be formed? When a low(er) energy state is achieved Whereby determined? 1. Lattice energy (roosterenergie): net energy gain or loss by electrostatic attractions/repulsions of closely packed ions. see 5th, figure 8.8; 7th figure 8.9 and §8.5 2. Energy involved to lose or gain electron in reaction (electronegativity) Ionic Bonds Diatomic molecule: E = 2.31* 10-19 [J.nm] (Q1. Q2) / r) Q1 and Q2 = numerical ion charges r = distance between ion centers (in nm) * with a positive & negative Q, the result is… * negative, thus a lower energy state achieved Lattice Energy (8.5) The change in energy when separated gaseous ions are packed together to form an ionic solid M+(g) + X-(g) MX(s) Lattice energy is negative (exothermic) (energy is released from the system of ions that combine into a lattice) Formation ionic solid Total enthalpy change = state property ! define suitable steps (see 5/6th Figure 8.8; 7th Fig. 8.9 ) • Sublimation of the solid metal Li F [kJ/mol] M(s) ⌫ M(g) [endothermic] 161 2 Ionization of the metal atoms M(g) ⌫ M+(g) + e- [endothermic] 520 3 Dissociation of the nonmetal ½X2(g) ⌫ X(g) [endothermic] 77 4 Formation of X- ions in the gas phase: X(g) + e- ⌫ X- (g) [exothermic) -328 5 Formation of the solid MX M+(g) + X-(g) MX(s) [quite exothermic] -1047 Total -647 Lattice Energy E = k [J.nm] (Q1. Q2) / r) Q1 and Q2 = numerical ion charges r = distance between ion centers (in nm) Concepten (vervolg) Terminologie Ionbinding Covalente binding Polaire covalente binding Bond Energy - The net energy-input to a molecule required to break a particular bond. - It gives us information about the strength of a bonding interaction Hess’s Law (Ch. 6) The enthalpy change of an overall process is the sum of the enthalpy changes of its individual steps. ⇒ Also to be used for calculation of reactionenthalpies from bond energies! ⇒ Why: Enthalpy = a state property! Reaction Energies Bond breaking requires energy (endothermic) Bond formation releases energy (exothermic) ΔH = Σ ΔH (bonds broken) – Σ ΔH (bonds formed) energy required energy released Born Haber cycle for ammonia synthesis • • • Reaction: N2 + 3 H2 ⇔ 2 NH3 Enthalpy change: ΔHo = - 92 kJ/mol N2 Enthalpy change equals also = ΔHo (break N2) = 941 ΔHo (break H2 )*3 = 3*432 ΔHo (formation N-H)*6 = - 6*391 = -109 kJ/mol Any difference between outcome and actual (measured) value is caused by effects not described by this simple model (e.g. polarity) Ammoniak - produktie Source: http://www.greener-industry.org/pages/ammonia/6AmmoniaPMHaber.htm source: http://www.linde-anlagenbau.de/process_plants/hydrogen_syngas_plants/gas_products/ammonia.php The production of the N2/H2 mixture: Reforming + CO-shift Chemische Binding (vervolg) Modellen Concepten Inter-moleculaire binding Intra-moleculaire binding Intermoleculaire Binding Gelokaliseerde electronmodellen - Ionbinding - Lewis structuren • VSEPR - Valence Bond model • Hybridisatie (Hfk. 9) Gedelokaliseerde electronmodellen (hfk. 9) - MO theorie - Metaalbinding Lewis Structure - Shows how valence electrons are arranged among atoms in a molecule. - Reflects central idea that stability of a compound relates to NGEC - noble gas electron configuration. Valence electrons - De elektronen in de orbitalen die het laatst gevuld worden, I.e. met het hoogste quantumgetal voor het bereiken van NGEC - Periodiek systeem: rij 1: H en He: 1s totaal 2 rij 2: Li t.m Ne: 2s, 2p totaal 8 rij 3: K t.m Ar: 3s, 3p totaal 8 etc. Comments About the Octet Rule - 2nd row elements C, N, O, F observe the octet rule. 2nd row elements B and Be often have fewer than 8 electrons around themselves - they are very reactive 3rd row and heavier elements CAN exceed the octet rule using empty valence d orbitals. When writing Lewis structures, satisfy octets first, then place electrons around elements having available d orbitals. Lewis-structuren schrijven • Standaard procedure (8.10): 1. Tel alle valentie electronen op van alle atomen, het gaat om het totaal! 2. Teken een − tussen elk paar verbonden atomen (dus geen : of .. !!!) 3. Verdeel de overige electronen, zo dat de duet regel voor waterstof, en de octet regel voor overige wordt nageleefd. (dit vergt ‘trial and error’) • Probeer HF, H2S, NH3, CH3OH, POCl3 Lewis structures /Formal Charge Bij gebruik van de procedure zijn er soms meerdere mogelijkheden De beste Lewis-structures zijn die die de laagste energietoestand weergeven > Molecules: Formal charge on each atom = 0; > Ions: Formal charge on least/most electronegative atom (positive/negative ion) Formal Charge The difference between the number of valence electrons (VE) on the free atom and the number assigned to the atom in the molecule. We need: 1. # VE on free neutral atom 2. # VE “belonging” to the atom in the molecule Formal Charge O–C–O (-1) (0) Not as good (+1) O=C=O (0) Better (0) (0) Resonance Occurs when more than one valid Lewis structure can be written for a particular molecule. These are resonance structures. The actual structure is an average of the resonance structures.