Particle Physics I I. II. III. IV. • • • • • • • • • • • Particle Physics II Introduction, history & overview (2) Concepts (3): Units (h=c=1) Relativistic kinematics Cross section, lifetime, decay width, … Symmetries (quark model, …) Quantum Electro Dynamics: QED (6-7) Spin 0 electrodynamics (Klein-Gordon) Spin ½ electrodynamics (Dirac) Experimental highlights: “g-2”, ee, … Quantum Chromo Dynamics: QCD (3-4) Colour concept and partons High q2 strong interaction SB Structure functions Experimental highlights: s, ep, … V. VI. VII. VIII. • • • • • • • • • Quantum Flavour Dynamics: QFD (4) Low q2 weak interaction High q2 weak interaction Electro-weak interaction Experimental highlights: LEP Origin of mass? (2) Symmetry breaking Higgs particle: in ee and in pp Origin of matter? (6) K0-K0, oscillations B0-B0 oscillations JvdB Neutrino oscillations Fantasy land (2) File on “paling”: z66/PowerPoint/ED_Master/Concepts.ppt II. Concepts Particle Physics 2002/2003 Part of the “Particle and Astroparticle Physics” Master’s Curriculum 1 2 Units (h=c=1) r12 Coulomb: q2 q1 q1 q 2 r 12 force-law: F 3 4 0 r12 3 Units units 2 2 Coulomb T 0 M L3 0 gives you the freedom to decouple unit of [q] from [Time], [Mass] and [Length] units SI (so be it!): Heaviside -Lorentz (simple field equation): 0 1 Gauss (simple force equation): 0 unit of charge: Ampère: j1 1 4 E 0 E E 4 qSI = 0 qHL = 04 qG force-law: j2 0 j 1 j 2r 12 3 3 F d r1 d r 2 3 4 r12 SI (so be it!): Heaviside -Lorentz (simple field equation): Gauss (simple force equation): B 0 j 1 B j c 4 B j c with 0 0 1 c 2 4 Natural units: h=c=1 Fundamental quantities: Units: Length [L] Time [T] Mass [M] h 1.0566 1034 Js c 299792458 m/s (1 Js=1 kg m2/s) (definition of the length unit) Simplify life by setting: c1 h1 [L]=[T] [M]=[L]=[T] Remaining freedom: pick one unit Energy! [E]=eV, keV, MeV, GeV, TeV, … Energy [E] Mass [M] Momentum Lenght [L] Time [T] GeV GeV/c2 GeV/c GeV1 hc GeV1 h (via E=1/2 mv2) (via p=mv) (via 1=[hc]=Jm and [E]GeV) (via 1=[h]=Js and [E]GeV) e (Gaussian units!) potential energy of electron in Hydrogen rest energy of an electron +e h mec e2 1 e2 2 mc h c 137 ( h / mc ) the fine-structure constant, , sets the strength of the e.m. interaction Maxwell equations in Gaussian units 5 E 4 1 B E c t B 0 In vacuum; d.w.z. vrijwel altijd: = 0 en j = 0 (In particle physics we do not need to worry about e.m. behavior in matter!) 1 1 E B 4 j c c t Cross section: area m2 GeV2 conversion factor : h c 2 typical cross sections 1b 1 nb 1 pb 1 fb Physics! (this course) = = = = 1024 1033 1036 1039 10.031052 J 2 m 2 1.610 cm2 cm2 cm2 cm2 19 J/eV 2 0.389 10 31 2 2 2 GeV m 0.389 GeV mb; 1 barn 10 LEP: 10+31 cm2s1= 0.1 nb1s1 100 pb1year1 “B-factory”: 10+33 cm2s1= 100 nb1s1 10 fb1year1 LHC: 10+34 cm2s1= 0.1 pb1s1 100 fb1year1 Lifetime: time s GeV1 1.05661034 Js 25 conversion factor : h 6.6 10 GeV s 19 1.610 J/eV 24 cm 2 typical “luminosities” Technology! (other course) 6 Relativistic kinematics Lorentz-transformations Co-moving coordinate systems S’ S v x x’’ Lorentzcontractie: Lengteverkorting gezien vanuit bewegend stelsel Events: S: @ t=0: (0,0) & (0,L) transform to S0: L0=L L= L0/ Tijdsdilatatie: Tijdsverlenging gezien vanuit bewegend stelsel Events: S0: @ z0=0: (0,0) & (t0,0) transform to S: t=t0 Voorbeeld: Muonen, 210-6 s, m106 MeV in kosmische straling p=10 GeV l v 60 km i.p.v. 600 m 7 Notation: 8 4-vector Invariant (“boosts”, rotations, …): Introduce metric: Contra-variant 4-vector Co-variant 4-vector Generally for 4-vectors a and b: Lorentz-invariant formulate in terms of scalars, 4-vectors,… 9 Lorentz-transformations: Rotations Lorentz-transformaties: These matrices must obey: For infinitesimal transformations you find: Because: 0 Rotation Z-axis: 1 12 2 21 2 1 Finite rotation around Z-axis yields: 1 2 3 0 1 2 3 S S’ x x e Lim 1 N N Infinitesimal macroscopic: 1 0 0 1 Lim N 0 0 0N 0 N 1 0 N 0 1 0 0 0 1 Lim N 0 0 0 0 0 1 0 0 0 0 0 1 Lim 1 N 0 1 0 N 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 cos 0 sin 0 0 0 0 0 0 sin cos 0 0 0 0 0 0 0 0 N 0 0 N N 0 0 0 0 exp 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0N 0 1 0 2 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 6 0 0 0 0 3 0 0 3 0 0 0 0 1 0 N 10 Lorentz-transformations: Boosts Boost along Z-axis: 0 3 03 30 3 0 Finite boost along Z-axis yields: De relatie tussen x0=ct, x3=z en x’0=ct’, x’3=z’ is: De relatie tussen en de snelheid v/c is: Oftewel: cosh 1 1 2 and sinh 1 2 Dus: 11 12 Lorentz group: Generators Lorentz-group parameters: Dus: 4 x 4 – 10 = 6 parameters: 3 rotaties: around X-, Y- & Z- axis 3 boosts: around X-, Y- & Z-axis Generators for infinitesimal transformations: J Lim 1 J i exp i N N N Angle : K Lim 1 K i exp i N N N Boost : Commutation-relations: Representations: spin j and mass m2 The velocity 4-vector 13 S Standaard definitie van snelheid: x/t: Gezien vanuit S: snelheid u= x/t Gezien vanuit S’: snelheid u’= x’/t’ En dus Dit is geen goede keus i.v.m. Lorentz invariantie Betere definitie van snelheid (t= ): Definieer nu de impuls als p=m=(E/c,px,py,pz), dan: Waarom p0E/c? Deeltjes met m=0: u x 14 Derivatives Afgeleiden: en Een contra-variante vector transformeert als: Een co-variante vector transformeert als: Het invariante product: voor de afgeleide analoog voor Covariante producten: Transformatie naar zwaartepunts systeem m1 m2 m3 m4 m5 Systeem van N deeltjes; transformeer naar het c.m. Lorentz boost met Dan inderdaad: Lab-frame 15 16 Verval van deeltjes mB mA mC c.m. frame Met volgt m 140 MeV m 106 MeV me 0.511 MeV m m 2 Voorbeelden: E Ee E 2 m 2 110 MeV Ee53 MeV3 deeltjes -verval: experimental result! 17 M/253 MeV Electron energy spectrum e e Drempel energie 18 EA B Lab-frame In het c.m. systeem is deze reactie juist mogelijk indien alle geproduceerde deeltjes in rust zijn Dus: C.M. energie Voorbeeld: anti-proton ontdekking p ontdekking : p p p p p p Voorbeeld: LEP, e + e- versneller met Ecm~90 GeV: drempelenergie: 4m p 2m2p m2p 2m p 7 m p 19 Pion verval 0 12 Lab-frame 0 E2 E Distribution? c.m. frame Openingshoek: E E1 m 140 MeV Experimentele detectie van hoog energetische pionen moeilijk! Neutrino bundel 20 (theory) K Generatie neutrino bundel via K of verval cm - c.m. frame En dus: Van cm naar lab KLab-frame lab - Voorbeeld; pK=p=200 GeV, m=139 MeV, mK=494 MeV: GeV GeV Neutrino bundel 21 (experiment) 192 GeV R 84 GeV K 50 100 150 200 K CDHS detector E 22 Compton verstrooiing P’ ,E k Foton verstrooiing: licht op elektronen Lab-frame 2 h Js kg /s m Als h en c weer teruggestopt worden: kg m c m/s m/s P ’,E’ k’ ’ 0.06 0.04 2h 2 0.022 0.0485 sin 2 sin 2 2 me c Compton’s original data 0.02 0.00 0 23 Mandelstam variabelen (I) Reactie A + B C + D gekarakteriseerd door 2 variabelen D cm A C C B c.m. frame In het C.M. frame: bijvoorbeeld EAcm en verstrooiingshoek cm Lorentz-invariante variabelen: Er geldt: A B lab D Lab-frame In het lab. frame: bijvoorbeeld EAlab en verstrooiingshoek lab 24 Mandelstam variabelen (II) Handige uitdrukkingen in termen van s, t & u: Lab. frame: p A E A, p A E A, p en p B m B,0 Energie van A: C.M. frame: p A E A, p A E A, p C.M. energie: E E A EB en E A E B 2 p B E B , p B E B , p s Energie van A: Want: A Voor A + A A + A, in het c.m. frame geldt: A p E , p p E , p A p E , p p E , p c.m. frame A 25 Cross section, lifetime, decay width, … 26 Levensduur Bijna alle elementaire deeltjes vervallen! d.w.z. Levensduur: Vertakkingsverhouding Eenheden b.v. mB mC mA c.m. frame verschillende vervalskanalen, b.v. 27 Werkzame doorsnede Ingrediënten om de telsnelheid A + B C + D te bepalen: 1. De overgangswaarschijnlijkheid Wfi De kans op een i f overgang per tijdseenheid per volume eenheid W wordt bepaald door de dynamica! 2. De experimentele omstandigheden (flux factor) a) b) Bundel intensiteit Dichtheid van het target # per tijdseenheid per oppervlakte eenheid # per volume eenheid 3. De fase-ruimte n W geeft de kans voor exact gedefinieerde toestanden i en f. Omdat niet elke toestand gemeten kan worden wordt over enkele (bijna identieke) toestanden geïntegreerd. Voor A + B C + D: []=oppervlakte v.b.: Verstrooiing aan een harde bol Verstrooiing aan een massieve bol: Berekening werkzame doorsnede Geometrie Berekening werkzame doorsnede: (vgl. Rutherford verstrooiing) Totale werkzame doorsnede, oppervlak zoals de bundel die ziet: b R 28 29 Fermi’s ‘golden rule’ (klassiek) Storingsrekening: Schrödinger vergelijking ‘ongestoorde’ toestanden Veronderstel: selecteer toestand af(t) Dan volgt voor da(t)/dt: kies alleen n=i En voor a(t) (laagste orde): De overgangsamplitude: met fi Voor een tijdsonafhankelijke storing: i E f E i t e 30 Fermi’s golden rule Geeft |Tfi|2 de kans voor if overgang? Neen! De overgangswaarschijnlijkheid per tijdseenheid wordt dan: i.h.a.: - welgedefinieerde begintoestand (bepaal jij!) - scala van eindtoestanden (bepaalt de natuur!) Fermi’s ‘golden rule’: 31 Relativistisch A + B C + D N e i Voor relativistische vlakke golven: Volgt voor de overgangswaarschijnlijkheid: Per tijd- en volume-eenheid wordt dit: Behoud van 4-impuls En de werkzame doorsnede: A A pA x E At i N e A pA x N-particle phase-space Klein-Gordon: 32 (volgende college) Dus voor het geheel in een doos LxLxL=V: take this simplest Faseruimte voor 1 deeltje Faseruimte voor 2Ec en 2ED deeltjes: Wfi met gekozen normalisatie: gebruik periode randvoorwaarden: pi=2 ni /L The flux factor De volumes V kunnen voor de bundel en target verschillend zijn. Ze vallen uiteindelijk weg. 33 v In het lab stelsel (B in rust en A heeft snelheid v) bundel target De cross sectie is onafhankelijk van volume & tijd! bundel Voor d: target (N=1/V) Wfi V4 2 V+2 1/Flux V+2 Voor d: (N=1/2EV) Wfi V4 2 V+2 1/Flux V+2 Note: even the factors 2E come out right i.e. the same! Lorentz invariant form 34 35 Flux factor voor A + B … c.m. stelsel: P1=(E1,+p) P2=(E2,p) note : lab stelsel: P1=(E, p) P2=(m2,0) p v E Generic Expressions: and verstroooiing A A + B C + D werkzame doorsnede A B A 36 D B C B verval A C + D vervalsbreedte C D A Faseruimte 2 deeltjes Bepaling van de faseruimte met impulsbehoud Doe de integraal over de 3-momenta van p4 m.b.v. de -functie Merk op dat E4 niet onafhankelijk is: Herschrijf in bol-coördinaten, d3p3=|p3|2ddp3 Dus: In cm stelsel geldt E3dE3=E4dE4=pdp Met E’=E3+E4 nog niet gelijk aan EE1+E2 p 1 d 2 2 E 4 Note: 6 vrijheidsgraden waarvan er 4 vastgelegd worden door impulsbehoud: 2 over 37 38 Voorbeeld: verstrooiing A+B C+D In het c.m. frame Fase ruimte (2dLips) Flux Werkzame doorsnede Identieke deeltjes: Identieke deeltjes in ‘final state’ kunnen niet onderscheiden worden A+B 1+1 A+B 1+1+2+2+2 1 S=1/2!=1/2 S=1/(2!3!)=1/12 2 Statistische factor: 2 1 Voorbeeld: verval A C+D 39 In het c.m. frame (gelijk lab frame) Fase ruimte Flux Voorbeeld: 0 Note S=1/2 u u Schatting: geeft: 10-17 s, terwijl PDG geeft: =8.7 10-17 s 40 Toy-model: ABC theory Feynman regels 41 Berekening van de amplitude M: Hiervoor is de dynamica van wisselwerking nodig. In het vervolg zullen we de amplitudes berekenen voor elektromagnetische, sterke en zwakke wisselwerkingen. Om een idee te krijgen eerst de amplitude voor een hypothetisch model, 3 toy-model: Feynman regels ABC theorie: p2 p1 A ig B p3 C B p1 p2 A q ig C ig p3 B p4 A Levensduur 42 (3 toy-model) B The matrix element A is simply [g]=[GeV] g C De vervalsbreedte wordt met Fermi’s regel: 8 En de levensduur 8 van deeltje A is dus De impuls van B (of C) kan bepaald worden, in c.m. systeem: 8 Verstrooiing A+A B+B (3 toy-model) A p2 (A) p4 B Tweede diagram! A C q A p1 (A): (B): (A+B): (B) p2 C q p3 B A p1 B p4 p3 B 43 44 Verstrooiing A+A B+B (3 toy-model) B A In het c.m. stelsel Veronderstel mA=mB=m en mC=0 Twee identieke deeltjes in eindtoestand (dus een extra factor ½!=½) Werkzame doorsnede: B A c.m. frame Verstrooiing A+B A+B (3 toy-model) A p2 (A) C B p1 (A): (B): (A+B): p4 B q p3 Two diagrams contribute! A p2 p1 A B (B) q C B p4 p3 A 45 Verstrooiing A+B A+B (3 toy-model) B A In het c.m. stelsel Veronderstel mA=mB=m en mC=0 Werkzame doorsnede: A B c.m. frame 46 47 Symmetries • • • • (…, quark model) Symmetry conserved quantity & classification of states Mathematical background: groups & representations Examples Quark model: Baryons & Mesons Symmetry 48 conserved quantity classification of states Imagine Hamiltonian invariant under some kind of (coordinate) transformation Physics invariant 1=U+U U+=U1 x x x x’ Rx 2 x x 2 x U U x (x) ’(x’) U(x) For matrix elements Hamiltonian H: (H=H’) Via de Schrödinger equation: conserved quantity U<U> x H x 2 x H x 2 2 x U HU x H U HU U 1HU UH HU U , H 0 dU d x U x x HU UH x 0 dt dt For an infinitesimal transformation, one can write: U 1 i O 1 U U 1i O 1i O 1 i O i O O O Operator O hermitean and commutes with H use eigenvalues to classify states! 2 Continuous space-time symmetries 49 Space: physics invariant under xx’x+ (if possible always study infinitesimal transformations) ( x) ( x) ( x ) ( x) ( x) ( x) ii ( x) x x i p x commutes with Hamiltonia n momentum conserved x Space: physics invariant under rr’(xy,y+x,z) ( r ) ( r ) ( r ) ( r ) ( x y , y x , z ) ( r ) y x ( r ) i ix iy ( r ) x y y x ix iy l z commutes with Hamiltonia n angular momentum conserved y x Time: physics invariant under tt’t+ (t ) (t ) (t ) (t ) (t ) (t ) ii (t ) t t i H commutes with Hamiltonia n energy conserved t inversion reflection 50 y z x y z x x x r y y Coordinates: x x r Coordinates: y y r z z 2 Operators: P P , with : P 1 P P hence P has eigenvalues 1 z 2 Operators: S S , with : S 1 S S pˆ pˆ Spˆ S pˆ x, pˆ y , pˆ z S 1 0 0 0 1 0 1 00 1 0 0 1 hence S has eigenvalues 1 Vectors: rˆ rˆ Srˆ S xˆ , yˆ , zˆ Vectors: rˆ rˆ P r̂ P rˆ pˆ pˆ Ppˆ P pˆ Pseudo-vectors: lˆ lˆ Plˆ P lˆ sˆ sˆ Psˆ P sˆ 1 z 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 P R z as 51 Zeeman and Stark effects energy levels |JM> Note: • vectors: E-field, r, p, … • axial-vectors: B-field, rp, … 2J+1 times degenerate rotations to change in between states |JM> (symmetry group: SO(3)) |JM> E0 Stark effect 2 times degenerate reflection in plane changes |J+M> into |JM> (symmetry group: SO(1), reflection) B0 |JM> Zeeman effect no degeneration can not change between states |JM> (symmetry group: SO(1), parity) 52 Is physics mirror P invariant? C.S. Wu: 60Co 60Co 5 4 + e e 53 B asymmetrie in e hoekverdeling? 5 60Ni* +1 e e Experiment! 60Ni* 4 +1 e e Sketch and photograph of apparatus used to study beta decay in polarized cobalt-60 nuclei. The specimen, a cerium magnesium nitrate crystal containing a thin surface layer of radioactive cobalt60, was supported in a cerium magnesium nitrate housing within an evacuated glass vessel (lower half of photograph). An anthracene crystal about 2 cm above the cobalt-60 source served as a scintillation counter for beta-ray detection. Lucite rod (upper half of photograph) transmitted flashes from the counter to a photomultiplier (not shown). Magnet on either side of the specimen was used to cool it to approximately 0.003 K by adiabatic demagnetization. Inductance coil is part of a magnetic thermometer for determining specimen temperature. L. M. Lederman: + + + + + Exp OK + Intrinsic spin P + CP C 54 Experiment: - + beam stopped in target + + + decays study + e+ + e + decays shows + polarisation infer polarisation since S=0 Experiment shows that parity transformed configuration does not exist! Exp OK Restore the symmetry using particle anti-particle operation: charged conjugation December 27, 1956: Fall of Parity Conservation 55 Symmetries have long played a crucial role in physics. Since 1925, physicists had assumed that our world is indistinguishable from its mirror image - a notion known as parity conservation - and prevailing scientific theory reflected that assumption. Until a series of pivotal experiments at the National Bureau of Standards in 1956 (now the National Institute of Standards and Technology), parity conservation enjoyed exalted status among the most fundamental laws of physics, including conservation of energy, momentum and electric charge. But as with relativity, Nature once again demonstrated that it is not always obliged to follow the rules of "common sense". Parity conservation implies that Nature is symmetrical and makes no distinction between right- and left-handed rotations, or between opposite sides of a subatomic particle. For example, two similar radioactive particles spinning in opposite directions about a vertical axis should emit their decay products with the same intensity upwards and downwards. Yet although there were many experiments that established parity conservation in strong interactions, the assumption had never been experimentally verified for weak interactions. Indeed, when the weak force was first postulated to explain disintegration of elementary particles, it seemed inconceivable that parity would not hold there as well. All that changed in the 1950s, when high-energy physicists began observing phenomena that could not be explained by existing theories, most notably the decays of K mesons emitted in the collision of a high-energy proton with an atomic nucleus. The K meson appeared in two distinct versions, decaying into either two or three pi mesons, (which necessarily had opposite parity), although in all other characteristics they seemed identical. In June of 1956, theoretical physicists Chen Ning Yang and Tsung Dao Lee submitted a short paper to the Physical Review raising the question of whether parity is conserved in weak interactions, and suggesting several experiments to decide the issue. Lee and Yang's paper did not immediately spark more than passing curiosity among physicists when it appeared in October 1956. Freeman Dyson later admitted that while he thought the paper was interesting, "I had not the imagination to say, 'By golly, if this is true, it opens up a whole new branch of physics!' And I think other physicists, with very few exceptions, at that time were as unimaginative as I." Richard Feynman pronounced the notion of parity violation "unlikely, but possible, and a very exciting possibility," but later made a $50 bet with a friend that parity would not be violated. One of the simplest proposed experiments involved measuring the directional intensity of beta radiation from cobalt-60 nuclei oriented with a strong magnetic field so that their spins aligned in the same direction. Parity conservation demands that the emitted beta rays be equally distributed between the two poles. If more beta particles emerged from one pole than the other, it would be possible to distinguish the mirror image nuclei from their counterparts, which would be tantamount to parity violation. Between Christmas of 1956 and New Year's, NBS scientists set about performing beta decay experiments. The team was led by Columbia Professor C. S. Wu. Professor Wu had been born in China in 1912, had received her PhD from the University of California in 1940, and had worked on the Manhattan Project during World War II. In 1975 she would serve as the first woman president of the APS. When the results were in, the NBS team arrived at a startling conclusion: the emission of beta particles is greater in the direction opposite to that of the nuclear spin. Thus, since the beta emission distribution is not identical to the mirror image of the spinning cobalt-60 nucleus, parity was unequivocally shown not to be conserved. Leon Lederman, who at the time worked with Columbia University's cyclotron, performed an independent test of parity with that equipment, involving the decay of pi and mu mesons, and also obtained distinct evidence for parity violation. In short, Nature is a semi-ambidextrous southpaw. And Feynman lost his bet. The result shattered a fundamental concept of nuclear physics that had been universally accepted for 30 years, thus clearing the way for a reconsideration of physical theories and leading to new, far-reaching discoveries most notably a better understanding of the characteristics of elementary particles, and a more unified theory of the fundamental forces. Further Reading: S. Weinberg, Reviews of Modern Physics, 52, 515 (1980); A. Salam, p. 525; S.L. Glashow, p. 539. 56 Is physics CP invariant? 57 The K0-K0 system: strong interactions : K0-K0 weak interactions : KS-KL Kaons consist of s-quarks and u/d-quarks: (more details next week) K us 0 K ds K 0 u s K ds Production: strong interaction: ss quark pairs produced E > 0.9 GeV: p K0 E > 6.0 GeV: p K0 n n E > 1.5 GeV: p K0K p Decay: weak interaction: s-quark u-quark decay (via s d quark mixing) S = 0.89350.0008 1010 s L = 5.170.04 108 s The K0-K0 58 system: CP eigenstates Meson: For mesons: P qq 1 qq L C qq 1 L S q orbital motion: L intrinsic spin: S (KS) (KL) Y LM , S 0 S 1 2 2 P C 0 0 0 qq K 0 K0 K0 K 0 K0 K0 arbitrary q’ |qq’> state CP 0 0 0 0 CP CP 0 0 0 0 0 0 CP 0 0 0 L even L odd CP K 0 0 K K KS 2 CP K 0 0 K K KL 2 Start with a K0 59 system: oscillations intensity The K0-K0 beam CP CP K K L K K 0 K S 2 2 t=0 I K ,t 0 I K 0,t 0 N(t) t=t 1 0 50% K0 t p K 75% 25% 0 0 K0 100% 0 K 0 K K L 2 AK ,t t AK ,t t 2 1 S L 2 2 2 AK S ,t t AK L,t t t i m 1 t i m 1 2 e S 2 S e L 2 L 1 N t et / et 2 4 t i m 1 S t i m 1 L e S 2 e L 2 Schrödinger e S t e Lt 2 costme S L t / 2 1 KL t t S L t / 2 S L e 2 costme 4 e A K 0,t 0 A K 0,t 0 0 I K ,t t 0 I K ,t t 2 KL t m 3.5 10 6 eV while m K S mK L 498 MeV CP-violation in the K0-K0 60 system So for a while the concept of mirror symmetry appeared to be restored if we assume that for reflections also particles anti-particles Angle (KL-beam, ) KL However: KL Br K L e e Br K L e e (N+N)/(N++N) K0 s u e e s u e e 10% 5% 0% KL -5% 0 t K K KL 2 0 0 KS KL 1 K 0 1 K 0 2 2 2 1 K 0 1 K 0 2 2 2 61 Physics is CPT invariant! Symmetries in (particle) physics Space-time Permutations identical particles Fermions anti-symmetric under interchange Bosons symmetric under interchange Internal symmetries Space translations conservation of momentum Time translations conservation of energy Rotations conservation of angular momentum Boosts Space reflections parity conservation (violated in weak interactions!) Time reversal SU(2), SU(3) Gauge symmetries Global conservation of charges Local interactions 62 63 Groups & representations Group (in mathematics) set transformations G obeying: Finite: o {1,a} with a2=1 o Permutations of N elements: SN Infinite: o Translations in 3 dimensions T(3) o Rotations in 3 dimensions SO(3) o Boosts in 3D space-time Closure: a,b in G cab in G Identity: 1 in G with ( a) 1a=a1=a Inverse: a in G exists a1 with aa1=a1a=1 Associative: a,b,c in G: (ab)c=a(bc) Commutative: a,b in G: ab=ba (Abelian) 1. 2. 3. 4. 5. Representation: mapping of elements of G onto matrices obeying Mc=MaMb once c=ab Ma a b c=ab Mb Mc=MaMb Example: group S3 three representations: d G Example: group {1,a} two representations: 1 (+1) and 1 (+1) a (+1) and a (1) matrices If all the matrices can not be broken down into blocks of smaller dimensional matrices the representation is called: irreducible " (1)" " (12)" " (13)" " (23)" " (123)" " (321)" (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) 1 0 1 0 0 1 0 1 12 3 2 3 2 1 2 12 3 2 3 2 1 2 12 3 2 3 2 1 2 12 3 2 3 2 1 2 64 Rotation group SO(3) Always the same questions: Specific for SO(3): 1. J1, J2 & J3 for rot. x-, y- & z-ax [Ji,Jj]=iijkJk and [Ji,J2]=0 spin j (J2) and projection m (J3) multiplicity 2j+1 Find generators infinitesimal transformations and their commutation relations (i.e. Lie algebra) Find quantum numbers with which to label states Find irreducible representationsmultiplet structure 2. 3. Ansatz with jm : J 3 jm m jm 2 J jm j j 1 jm introduce : J J1 i J 2 and : [ J 3 , J ] J |j+j> What can you conclude? |jm+p> J 3 J jm J J 31 jm m1 J jm J jm jm1 Find C : 2 2 2 C jm J J jm jm J J jm jm J J 3 J 3 jm j ( j 1) m m J+ |jm+1> 2 |jm> 2 2 2 C jm J J jm jm J J jm jm J J 3 J 3 jm j ( j 1) m m 2 C j ( j 1)m( m1) 0 Note: phase convention required! mmax j mmin j 2j must be an integer! |jm1> J |jj> |jmq> 65 SO(3) representations & SU(2) symmetry j 0: J 3 0 J 0 1 j : 2 1 1 0 J3 2 0 1 SU(2)SO(3) j 1: 0 0 0 0 J 0 00 1 0 J 1 0 1 0 1 J1 2 1 0 1 J3 0 0 J 0 0 1 0 J 0 0 0 0 0 1 0 i J2 2 i 0 2 0 2 J 0 0 0 0 2 0 0 0 1 1 2 2 1 1 2 2 11 0 10 0 2 0 1 1 Addition of angular momenta (j1j2): j1j2= j1j2j1j2+1j1j2+2……j1+j21j1+j2 Example: 1 2 1 2 0 1 two sets of wavefunctions : jm( j1 j 2 ) 10 J 11 2 j 1 states: 11 1 1 1 1 22 j 0 state: 00 10 22 00 11 22 11 2 2 2 1 1 2 2 11 22 2 1 1 2 2 11 22 and 11 2 2 2 j1m1 j 2m2 j1m1 j 2m2 11 J 10 1 1 1 1 2 2 2 2 2 11 22 2 (phase convention used!) Clebsch-Gordon coefficients 66 67 Constructing the SO(3) representations General principle: • Start with infinitesimal transformations: x-, y- and z-axis rotations: X : RX 1 0 0 0 cos sin sin cos 0 1 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 J1 • Find the matrices corresponding to these infinitesimal rotations j 0: j 1 : 2 J 3 0 J3 J 0 1 1 0 2 0 1 j 1: 1 J3 0 0 0 0 0 0 1 0 J 0 J 0 1 0 0 1 0 1 J1 2 1 0 0 J 0 0 2 0 0 00 J 0 0 1 0 1 0 i J2 2 i 0 2 0 0 J 0 2 0 0 0 1 1 2 2 1 1 2 2 11 0 10 0 2 0 1 1 68 Constructing the SO(3) representations • Construct the macroscopic rotations via exponentiation: 69 Isospin Heisenberg (1932): 1. proton & neutron states of one particle: the nucleon 2. physics invariant under p n transformation i.e. an internal SU(2) symmetry All this: strong interaction only! q 1 proton : s 1 2 m 938.28 MeV p 1 1 2 2 q 0 neutron : s 1 2 m 939.57 MeV n 1 1 2 2 Name: “isospin” analogous to the normal (Euclidean) spin Isospin multiplets: I=1/2 I=1 I=3/2 nucleon (mp=938.28 MeV, mn =939.57 MeV): pions (m0=135 MeV, m =140 MeV): -baryons: (m1232 MeV): p 12 12 11 3 3 2 2 n 0 10 3 1 2 2 0 1 1 2 2 11 3 1 2 2 3 3 2 2 70 Isopin examples Two nucleon system: Only stable 2-nucleon system: deuterium 2H What is the isospin of deuterium? if I 1 : pp if I 0 : pn 1 1 2 2 1 1 2 2 , pn 1 1 2 2 1 1 2 2 11 2 2 1 1 2 2 1 1 2 2 11 2 2 2 1 1 2 2 1 1 2 2 , nn 1 1 2 2 1 1 2 2 this corresponds to deuterium: I=0: 2 Energy levels in “mirror” nuclei: nuclei with same total number of nucleons but differences in number of protons/neutrons What can you say about the isospin of these levels? Branching ratio’s: Iz=1 Iz=0 Iz=+1 4+ 4+ 4+ I 1 2+ 2+ 2+ I 1 0+ 0+ 0+ I 1 18O 1+ 18Ne I 0 67% 18F What can you say about the relative occurrence of: p0 and p : M 0 3 1 1 1 10 2 2 2 2 2 3 n : M 33% n+ decays? 3 1 1 1 11 2 2 2 2 1 3 hence 0 p 2 n 71 Charge conjugation particle anti-particle Cp p Define operation “C” which converts a particle into its anti-particle: particle anti-particle particle doublet: Cn n C e e 1 C 1 1 C C C C2=1 Not often particle = anti-particle. Exceptions: photon: particle/anti-particle bound states C = n anti-particle doublet: Group with two elements because C2=1 C=C1=C† C hermitean eigenvalues +1 and 1 p n p With this choice Particles and anti-particles transform alike under rotations in iso-space e.g. rotation of around x-axis p 0 n 1 1 p n p n 0 n p n p n 0 p 1 1 n p n p 0 p n p n 72 Isospin at the quark level: u-quark & d-quark (flavors) Messy situation in the sixties (compare pre-Mendeleev chaos atomic elements): Many particles: p, n, , , , , , , , , , , , …… e p too often large angle scatterings proton has sub-structure Progress: 1. Theory: ordering in terms of quark sub-structure: u-, d- and s-quarks (flavors) 2. Experiment: a. Discovery of sub-structure in the nucleon (compare Rutherford atom) b. Discovery of a fourth quark flavor in 1974: charm Copy isospin to u- and d-quarks: quark doublet : Baryons : qqq bound states 1 1 1 1 1 3 isospin : doublets or quadruplets 2 2 2 2 2 2 example : - baryon : - ddd - udd dud ddu 3 0 uud udu duu 3 uuu u , q 23 1 d , q 3 anti - quark doublet : d , q 13 2 u , q 3 Mesons : qq bound states 1 1 isospin : 0 1 singlets or triplets 2 2 example : - meson : - du 0 uu dd 2 ud “Eightfold way”: 73 u-quark, d-quark & s-quark (flavors) Gelmann & Zweig (1963): 1. hadrons built with three constituents: u-, d-, & s-quarks: 1. 2. 2. Mesons: qq Baryons: qqq physics invariant under uds transformation i.e. an internal SU(3) symmetry u d u: d : s: u quark, q 3 2 d quark, s quark, 1 q 3 1 q 3 Note: do not carry this beyond uds since the mass differences between the quarks become way too large All this: strong interaction only! What does this buy you? 1. 2. Order in the zoo of particles; compare p and n as two states of the nucleon Expression of properties (masses, magnetic moments, …) in terms of a few parameters But realize: SU(3) flavor is badly broken (mumdms) and applies only to strong interaction! This opposed to exact color SU(3) symmetry of strong interactions we will encounter later! 74 SU(3) symmetry J For SU(2): Multiplets |jm>, 2j+1 states; one traceless generator: J3 Step operators within multiplet: J J1 iJ2 Build all representations from 2D (j=1/2) representation J1 1 2 1 12 0 1 1 0 J 2 1 2 2 12 0 i i 0 J 3 1 2 j=1/2 J 3 12 0 1 j=1/21/2 j=0 1 0 j=1 For SU(3): Three SU(2) sub-groups; two traceless generator: 3 and 8 Three step operator sets; 1 i2 4 i5 6 i7 Build all representations from 3D (“3 and 3”) representations 0 1 1 0 1 0 i 0 0 1 0 i 0 0 0 0 0 0 0 0 0 0 2 i 0 0 d 0 0 0 4 0 0 1 s u s 3 0 0 0 5 0 0 i d 0 0 0 6 0 0 0 qq u 1 0 1 7 0 0 0 0 0 i 0 0 i 1 0 0 1 0 1 0 1 0 8 3 0 0 0 0 2 0 0 combinatio ns : 3 3 1 8 qqq combinatio ns : 3 1 3 0 0 3 3 3 1 8 8 10 Mesons qq 75 combinatio ns : 3 3 1 8 = So what does this all mean: • Mesons in multiplets with 1 or 8 similar particles: • Same intrinsic spin, total spin, parity, … • Different quark decomposition • Compare: energy levels H all refer to H; same for particles in same multiplet • Symmetry not exact slight mass differences, etc. How do you find the quark wave functions? 1. Start with arbitrary one (normalized) 2. Apply step operators until you exhaust the multiplet! Examples: Octet: K K S 0 : ,' 0 K K 0 * *0 K K S 1 : , 0 * K K ds 0 *0 Singlet: uu dd ss 3 dd uu 2 us du ud dd uu 2 ss 6 su sd 76 Meson masses If SU(3) would be exact all particle masses within a multiplet identical SU(3) symmetry broken by: 1. u-, d- and s-quark mass differences (singlet+octetmixed “nonet”) In addition binding energy has contribution from quark spin-spin interaction 2 h S 1: m1 m 2 A s 1s 2 4m1m 2 Ansatz : M ( meson ) m1 m 2 A m1m 2 3h 2 S 0: m1 m 2 A 4m1m 2 Fit this m =m =310 MeV and m =483 MeV u d Meson nonet S=0 s fit mass exp mass Meson nonet S=1 fit mass exp mass 140 138 (3) 780 776 K (2x2) 484 496 K (2x2) 896 892 (1) 559 549 (1) 780 783 ’ (1) --- 958 (1) 1032 1020 (3) Baryons qqq combinatio ns : 77 3 3 3 1 8 8 10 = Same recipe as for mesons; bit more complicated Singlet: udd dud ddu 3 uds dus usd sdu dsu sud 6 uuu ddd sdd dsd dds 3 Decuplet: udd dud 2 Octets: need a convention! “A” asymmetric in 12 “S” symmetric in 12 dsd sdd 2 “A” uds dus usd sdu dsu sud 6 dss sds ssd 3 dsu sdu usd sud suu 2 usu suu 2 uss sus 2 suu usu uus 3 uss sus ssu 3 “S” udu duu 2 2(ud du ) s (us su )d ( sd ds )u 12 dss sds 2 duu udu uud 3 sss The baryon discovery At the time of the proposal by Gelmann and Zweig were not all multiplets complete! Nice example: baryons in decuplet had one missing member; characteristics were predicted! 0 0 1232 MeV 1385 MeV 0 1533 MeV ? 0p 1680 MeV 000 0 e+e Bubble chamber experiment: s sss s s K+p +K++K0 (strong interaction: s-quarks conserved) 0 78 79 Adding the intrinsic spin Mesons: 1 1 0 1 2 2 00 11 Baryons: 10 2 2 S=0 11 S=1 1 1 1 1 1 3 2 2 2 2 2 2 Symmetric 103/2 8A1/2A+8S1/2S 3 1 3 2 2 3 3 2 2 " A" : Anti-symmetric 13/2 8A1/2S+8S1/2A " S" : 1 1 2 2 2 2 1 1 6 2 2 3 1 3 2 2 1 1 2 2 2 3 3 2 2 S=1/2 2 1 1 6 2 2 S=1/2 Remark: of course this only refers to the intrinsic spin (S) of a hadron. In addition any hadron (meson and baryon) will have orbital spin (L) due to the quark motions. S=3/2 80 Restoring anti-symmetry: color little problem: s s s ++ u u u intrinsic spin : quarks : sss 3 3 2 2 symmetric symmetric symmetric intrinsic spin : 3 3 2 2 quarks : symmetric uuu particle with half-integer spin obey Fermi-Dirac statistics must be anti-symmetric brute force solution: invent hidden degree of freedom: color physics: 1. 2. 3. 4. q q q q invariant under color (RGB) transitions; exact SU(3) symmetry 23 compare the color charge and the electromagnetic charge instead of the photon now eight force carriers: gluons: RB, RG, RB, RG, BG, BG, RR, BB, GG hypothesis: all hadrons in color singlet state: baryons: multiply with: (RGBRBGGRBBGR+BRG+GBR)/6 mesons: multiply with: (RR+BB+GG)/3 (symmetric in color) (anti-symmetric in color) 81 Color in experiments R e quarks e qq e e udsc uds udsc no color decay width color no color Z decay probabilities Z e e 81 MeV 81 MeV Z 162 MeV 162 MeV Z uu 276 MeV 93 MeV Z dd 360 MeV 120 MeV Example: , p, and n wave functions Conventions: sss SSS p 82 quark with spin up: qQ quark with spin down: qq 1 udu duu udu duu 2 uud 2 2 2 2 6 6 11 udu 3 3 2 duu 3 3 2 2 uud 2 26 11 udu 422 duu 24 2 uud 2 2 4 26 11 4UdU 2 uDU 2UDu 2 DuU 4 dUU 2 DUu 2UuD 2 uUD 4UUd 26 1 2UdU uDU UDu DuU 2 dUU DUu UuD uUD 2UUd 18 1 2UdU uDU UDu 18 n 1 18 2 DuD dUD DUd 2 dUU DuU DUu 2 uDD UdD UDd Wave functions full (123) symmetry Complete wave function: multiply with: 2UUd UuD uUD 2 DDu DdU dDU (RGBRBG GRB BGR +BRG +GBR)/6 83 Baryon magnetic moments Magnetic moment of a particle is obtained using: jj constituents i 3i jj i For a S=1/2 point (Dirac) particle with mass m and electric charge q one finds: q 2m With the quark-flavour wave functions one can calculate magnetic moments of mesons and baryons with as only unknown parameters the u-, d- and s-quark masses! Proton: p p 3 i 1 i 3 i p 2UdU uDU UDu 2 dUU DuU DUu 18 2UUd UuD uUD 3 2UdU uDU UDu i 1 i 3 i 4 u d 3 4( 2 u d ) ( d ) ( d ) 18 3 Neutron (simply ud): n n 3 i 1 i 3i n 3 4( 2 d u )( u )( u ) 4 d u 18 3 n 2 (exp : 0.68) 3 p 2 dUU DuU DUu 2UUd UuD uUD 18 Assume now: mumdm u=e/3m and d= e/6m 4 u d e 3 2m 4 d e e n 3 3m p 84 85 86 87