REËLE-OPTIETHEORIE ALS DENKMODEL

advertisement
WAARDEREN
DICHTER BIJ DE WERKELIJKE WAARDE VAN EEN INVESTERING
REËLE-OPTIETHEORIE
ALS DENKMODEL
De reële-optietheorie houdt bij de waardering van een
investering rekening met de flexibiliteit van het
management van een onderneming.
Het management van een onderneming is flexibel in zijn besluitvorming ten
aanzien van investeringen. Flexibiliteit heeft waarde en bij de waardering van een
investering (of van de onderneming in haar geheel) dient ook met deze waarde
rekening te worden gehouden. Traditionele methoden zoals return on investment
of de nettocontantewaardemethode doen dat niet; de reële-optiemethode wel. In
dit artikel wordt het belang van het onderkennen van (reële) optie-elementen in
investeringsbeslissingen beschreven. De reële-optietheorie wordt toegelicht met
een praktijkvoorbeeld.
Door drs. Emile ten Hoor RA, zelfstandig adviseur/trainer corporate finance ([email protected])
TIJDSCHRIFT ADMINISTRATIE
17 NUMMER 1 / 2, JANUARI / FEBR UARI 2004
De beslissing om wel of niet te investeren
wordt vaak genomen op basis van emotie:
‘leidt deze beslissing tot synergie met onze
huidige activiteiten?’, ‘is deze beslissing strategisch gezien verstandig?’. Synergie bestaat
in veel gevallen uit een complex van synergiefactoren, bijvoorbeeld het op korte termijn besparen van grondstofkosten en het
op lange termijn bereiken van nieuwe markten. Het volgende praktijkvoorbeeld illustreert dit complex van synergiefactoren.
VOORBEELD
Een papierproducent verwacht door investering
in een ERP-systeem inclusief productiemodule
een kostenbesparing te realiseren (synergie 1)
door efficiënter gebruik van machines. Hierdoor
vergroot hij tevens zijn capaciteit die hij aanwendt voor het leveren van grotere volumes aan
zijn huidige afnemers (synergie 2). Door uitbreiding van zijn ERP-systeem met een salesmodule kan hij additioneel een kostenbesparing realiseren door inkrimping van het aantal
fte’s binnen de afdeling sales (synergie 3).
Bovendien kan hij zijn omzet vergroten doordat
hij nieuwe klanten kan bedienen (synergie 4).
Deze synergiefactoren maken deel uit van de
besluitvorming rond de investering. De eerste twee factoren zijn te kwantificeren door
gebruikmaking van traditionele methoden
zoals de discounted cashflow-methode. De
laatste twee factoren zijn vormen van flexibiliteit, die niet kunnen worden gekwantificeerd volgens deze methode. Deze flexibiliteit heeft bovendien waarde voor de
onderneming. De mogelijkheid van de
onderneming om bij gunstige ontwikkelingen het huidige systeem uit te breiden,
waardoor commerciële voordelen kunnen
worden behaald, zal door de markt positief
worden gewaardeerd, waardoor de hele
onderneming door de markt hoger wordt
gewaardeerd.
optie, het recht om de investering te doen.
Het recht om de vervolginvestering te doen,
wordt verkregen bij de oorspronkelijke
investering in het ERP-systeem.
(Een optie is het - verhandelbare - recht om
van de onderliggende waarde een hoeveelheid te kopen (call) of te verkopen (put)
tegen een vooraf overeengekomen prijs en
gedurende de looptijd van de optie.)
De reële-optietheorie is een uitbreiding van
de financiële-optietheorie op reële (nietfinanciële) activa. Wanneer ons voorbeeld
wordt vertaald naar de financiële-optietheorie, dan heeft het management de mogelijkheid (call-optie) om zich tegen een uitoefenprijs (X) die gelijk is aan de hoogte van de
extra investering, een onderliggende waarde
(S) te verschaffen. De uitoefenprijs is dan het
investeringsbedrag van de sales-module. De
onderliggende waarde is de contante waarde
van de toekomstige extra kasstromen als
gevolg van de kostenbesparing (synergie 3)
en vergrote omzet (synergie 4).
WAARDERING VAN EEN REËLE OPTIE
De belangrijkste optiewaarderingsmodellen
die worden gebruikt binnen de financiëleoptietheorieën zijn het waarderingsmodel
van Black & Scholes en het binominale
waarderingsmodel. Deze modellen zijn
gebaseerd op één basisgedachte: een calloptie zal worden uitgeoefend op het
moment dat de onderliggende waarde hoger
is dan de uitoefenprijs. De optie is dan ‘in
the money’. In ons voorbeeld betekent dit
dat de contante waarde van de toekomstige
extra kasstromen hoger is dan het investeringsbedrag.
Ons voorbeeld zal worden uitgewerkt op
basis van het binominale waarderingsmodel
omdat dit model overzichtelijker is dan het
mathematisch complexe waarderingsmodel
van Black & Scholes.
Het binominale waarderingsmodel gaat uit
van een beslissingsboom. Wanneer we deze
beslissingsboom toepassen op het voorbeeld
van de producent van karton, krijgen we het
beeld als is weergegeven in figuur 1.
Flexibiliteit
wordt vertaald
naar keuzemogelijkheden
In het voorbeeld van de papierproducent is
de kans dat de implementatie voorspoedig
verloopt én dat de marktomstandigheden
zich gunstig ontwikkelen, ingeschat op 40
procent. De kans op ongunstige ontwikkelingen is 60 procent. De risicovrije voet
voor beleggingen is 5 procent (hiervoor
kan bijvoorbeeld het rendement op staatsobligatie worden genomen). De kasstroom
bij gunstige ontwikkelingen is ingeschat op
250.000 euro en bij ongunstige ontwikkelingen op 100.000 euro. Het investeringsbedrag voor de vervolginvestering is
150.000 euro. Het geëiste rendement voor
nieuwe investeringsprojecten binnen de
onderneming is 10 procent. De netto contante waarde van de investering in het
ERP-systeem zonder de mogelijkheid om
f iguur 1
Kasstroom 1
Gunstige
ontwikkelingen
REËLE-OPTIETHEORIE
Een theorie die wel de mogelijkheid biedt
om flexibiliteit te waarderen is de reëleoptietheorie. De term ‘reële optie’ wordt
hierbij gebruikt voor de expliciete waardering van de mogelijkheden van het management om in te grijpen bij tussentijds veranderende situaties (flexibiliteit). Een reële
optie is hierbij het recht om een actie te
ondernemen in de toekomst.
De mogelijkheid om een vervolginvestering
te doen in de sales-module door de papierproducent kan worden gezien als een call-
Investering
ERP-systeem
Investering
sales-applicatie
Ongunstige
ontwikkelingen
Kasstroom 2
Figuur 1. Na de investering in het ERP-systeem bestaat de mogelijkheid om
te investeren in de sales-applicatie. Deze investering zal bij gunstige
omstandigheden leiden tot kasstroom 1 en bij ongunstige
omstandigheden tot kasstroom 2.
TIJDSCHRIFT ADMINISTRATIE
18 NUMMER 1 / 2, JANUARI / FEBR UARI 2004
f iguur 2
C=
40%=0,4
Investering
ERP-systeem
Gunstig
€ 250.000
Investering
sales-applicatie
pCu+(1-p)Cd
r
Voor de berekening van de waarde van de
call-optie in genoemd voorbeeld kunnen
we eerder berekende variabelen invullen in
bovenstaande formule. We krijgen dan als
waarde voor de call:
C=
0,3515 X 100.000 + 0,648 X 0
=31.954
1,1
60%=0,6
Ongunstig
€ 100.000
Figuur 2. Beslissingsboom uitgewerkt voor de papierproducent uit
het voorbeeld
uit te breiden wordt ingeschat op -/10.000 euro. Het beeld als is weergegeven
in figuur 2 ontstaat wanneer deze gegevens
worden ingevuld in de beslissingsboom.
De huidige (contante) waarde van de
investering in de sales-applicatie wordt op
basis van bovenstaande gegevens:
(0,4 X 250.000+0,6 X 10.000)
NCW=
=145.455
1,10
Wanneer we op deze contante waarde het
investeringsbedrag van 150.000 euro in
mindering brengen, krijgen we de netto
contante waarde van de (vervolg)investering, die dus -/- 4545 euro bedraagt. Dit
betekent dat de investering in de salesapplicatie niet verstandig is op basis van de
nettocontantewaardemethode.
FLEXIBILITEIT VAN MANAGEMENT
In deze berekening is echter geen rekening
gehouden met de flexibiliteit van het management. Indien de marktomstandigheden
zich gunstig ontwikkelen, heeft het management de mogelijkheid de vervolginvestering
te doen. Indien de marktomstandigheden
zich ongunstig ontwikkelen, heeft het management de mogelijkheid de investering niet
te doen.
Wanneer we op basis van het binominale
model een waarde gaan toekennen aan deze
mogelijkheden, moeten we eerst de hedgeprobability berekenen. (De afleiding van de
hedgeprobability wordt, gezien de complexiteit, in dit artikel buiten beschouwing
gelaten.) De hedgeprobability (p) is vrij vertaald de kans dat de optie wordt uitgeoefend. In formulevorm: p = (r-d)/(u-d).
(Hierbij geldt: r = 1+risicovrije rendement;
u = cashflow bij gunstige ontwikkeling,
gedeeld door ncw investering; d = cashflow
bij ongunstige ontwikkeling, gedeeld door
ncw investering.)
In het voorbeeld van de papierproducent is
de variabele u gelijk aan 250.000/ 145.455
= 1,7188 euro; d is gelijk aan 0,6875 en r is
gelijk aan 1,05. Hieruit volgt dat de hedgeprobability voor de call-optie op de vervolginvestering 0,3515 is.
De opbrengst (pay off) van de call bij gunstige ontwikkeling (Cu) is gelijk aan de onderliggende waarde op uitoefendatum, verminderd met de uitoefenprijs. In formulevorm:
max [0,uS-X]. De opbrengst van de call bij
ongunstige ontwikkeling (Cd) is gelijk aan
max [0,dS-X].
In het voorbeeld van de papierproducent is
de opbrengst van de call bij gunstige ontwikkeling (Cu) gelijk aan max [0, 250.000
- 150.000] = 100.000 euro.
De opbrengst van de call bij ongunstige
ontwikkelingen (Cd) is [0, 100.000 150.000] = 0 euro.
De mogelijkheid van de vervolginvestering
wordt op uitoefendatum gewaardeerd op
100.000 euro bij gunstige ontwikkelingen;
indien de omstandigheden zich ongunstig
ontwikkelen heeft de optie een waarde van
0 euro.
Voor de berekening van de huidige waarde
van de call berekenen we de kans dat de call
‘in the money’ expireert, vermenigvuldigd
met de opbrengst van de call bij gunstige
omstandigheden en de kans dat de call ‘out
of the money’ expireert, vermenigvuldigd
met de opbrengst van de call bij ongunstige
omstandigheden. In formulevorm:
TIJDSCHRIFT ADMINISTRATIE
Wanneer de waarde van de call-optie ad
31.954 euro wordt opgeteld bij de netto
contante waarde van de investering in het
ERP-systeem ad -/- 10.000 euro en de
netto contante waarde van de investering
in de sales-applicatie zonder call-optie ad /- 14.454 euro, wordt de waarde van de
investering inclusief call-optie verkregen.
Deze waarde is 7.500 euro voor de totale
investering.
Dit betekent dat, wanneer in het voorbeeld
de investering wordt beoordeeld op basis van
de traditionele methoden, er niet wordt geïnvesteerd, terwijl de investering een positief
waarde-effect heeft op de onderneming.
Zonder
reële-optietheorie
kunnen
investeringen
worden
ondergewaardeerd
In voorgaande berekening is een aantal veronderstellingen opgenomen: er is uitgegaan
van slechts twee mogelijke kasstromen als
gevolg van de vervolginvestering. In de werkelijkheid bestaat een continue verdeling van
mogelijke kasstromen. Het Black & Scholesmodel geeft een oplossing voor deze vooronderstelling, in dit model wordt namelijk
uitgegaan van een continue kansverdeling.
Dit model is echter gezien de mathematisch
complexiteit niet gebruikt in dit artikel.
Bovendien is in het voorbeeld uitgegaan van
een tweeperiodenmodel. In de werkelijkheid
dient de gehele levensduur van de investering in beschouwing te worden genomen.
19 NUMMER 1 / 2, JANUARI / FEBR UARI 2004
REËLE-OPTIETHEORIE
ALS DENKMODEL
Door de reële-optietheorie wordt de flexibiliteit van het management bij het nemen
van een investeringsbeslissing inzichtelijker. De reële-optietheorie is een methode
om flexibiliteit te waarderen door deze te
vertalen naar keuzemogelijkheden (opties).
De reële-optietheorie maakt hierbij gebruik
van verschillende modellen uit de financiële-optietheorie. Door gebruikmaking van
de financiële-optietheorie ontstaan ook
twee belangrijke bezwaren: (1) de complexiteit van de berekeningen en (2) het
gebruikmaken van theoretische modellen
voor optiewaardering. Het is door deze
bezwaren de vraag of de berekende waarde
wel een reële waarde vertegenwoordigd van
een investering en de vraag of het model
wel praktisch toepasbaar is.
Twee bezwaren
ontstaan door
gebruikmaken
van financiëleoptietheorie
Advertentie
Wanneer geen gebruik wordt gemaakt van
de reële-optietheorie kunnen investeringen
worden ondergewaardeerd doordat optieelementen niet worden gewaardeerd. Hierdoor kan de onderneming belangrijke kansen missen.
Naar mijn mening dient de reële-optietheorie niet als exact kwantitatief model te
worden gebruikt voor de berekening van
de waarde van een investering, maar eerder
als denkmodel voor investeringsbeoordelingen. Door de berekening van de waarde
van de flexibiliteit van het management
ontstaat beter inzicht in de criteria die ten
grondslag liggen aan investeringsbeslissingen. Door gebruikmaking van de reëleoptietheorie komt men dus dichter bij de
werkelijke waarde van een investering,
waardoor een voordeel ten opzichte van
concurrenten wordt verkregen.
TIJDSCHRIFT ADMINISTRATIE
20 NUMMER 1 / 2, JANUARI / FEBR UARI 2004
Download