Serious Games in Learning Processes

advertisement
SERIOUS GAMES IN LEARNING
PROCESSES
Bachelor thesis
Linda J. C. Stege
ANR: s941399
Supervisor: dr. ir. P.H.M. (Pieter) Spronck
Second supervisor: dr. H.W.J.M. (Harold) Miesen
Third supervisor: G. (Giel) van Lankveld, MSc.
University of Tilburg
Corporate Communication and Digital Media
Communication and Information Sciences
Department of Humanities
Serious games in learning processes 2
______________________________________________________________________________
Abstract
This study investigates to what extent serious games support learning processes. We compared
the abilities of two groups of high school students to answer questions on a subject that they were
recently instructed on. The first group received its instructions by means of a serious game, the
second group by means of a text. We discovered that the group that received its instructions via a
serious game performed significantly better than the text group in solving the assignments (F
(1,183) = 4.12, p = .04). Surprisingly, the group that received its instructions via a text indicated
that they were better motivated (F(1,184) = 6.40, p = .01). Further analysis showed that clear
gender differences were underlying these results: boys benefitted most from instruction via the
serious game, while girls were better motivated by the text. From our results we conclude that
serious games can be more effective in learning processes than written texts, but that they do not
necessarily motivate students better than a text book.
Linda Stege
3
______________________________________________________________________________
Contents
Chapter 1: Introduction
5
1.1 Computer games
5
1.2 Comparing serious games to written texts
5
1.3 Cognitive, psychomotor and affective learning
6
1.4 Problem statement and research questions
6
1.5 Outline
7
Chapter 2: Background
8
2.1 Serious games
8
2.2 Previous research regarding serious games
9
2.3 The pros of computer games
9
2.4 Concerns about computer games in the classroom
Chapter 3: Method
11
12
3.1 The serious game: E and Eve’s Electrical Endeavors
12
3.2 The procedure
13
3.3 The participants
15
Chapter 4: Results
16
4.1 Knowledge
16
4.2 Motivation
17
4.3 Gender specific motivation
18
4.4 Gender specific knowledge
19
Serious games in learning processes 4
______________________________________________________________________________
4.5 Opinion on computer games
19
4.6 Validity of the experiment
20
Chapter 5: Discussion
21
Chapter 6: Conclusion
22
References
23
Appendices
25
Appendix I: The assignments for the game group
26
Appendix II: The text for the text group
35
Appendix III: The assignments for the text group
42
Appendix IV: Answers assignments
49
Linda Stege
5
______________________________________________________________________________
Chapter 1: Introduction
In this chapter we first focus on the different kinds of computer games. Section 1.1 looks into the
purposes of computer games and introduces three different types of computer games. Section 1.2
compares computer games for educational purposes to text books. In Section 1.3 Bloom’s
Taxonomy on Teaching and Learning is introduced. This taxonomy will be used as an evaluation
method for the experiment. The problem statement and research questions are stated in Section
1.4. At the end of this chapter, the outline of this thesis is presented in Section 1.5.
1.1 Computer games
Three different purposes can be distinguished for computer games. First, the largest and most
common group of computer games is aimed at entertainment purposes. Then there are
educational games, which are games that are designed for information transmission. Educational
games can appear as board games, card games, video games and computer games. Finally, there
are computer games which focus on the development of skills and general knowledge. These are
called “serious games”. Serious games are not necessarily designed for learning objectives.
Compared to educational games, serious games tend to look more like entertainment games
(Johnson, Vihjalmsson, & Marsella, 2005). In literature, the terms “educational games” and
“serious games” are often used interchangeably, but this is not correct. It could be said that serious
games are a combination of educational games and entertainment games. “Serious games are
computer games that serve a purpose beyond just entertainment, such as education or
training” (Winn, 2008, p.1024). Serious games are often referred to as edutainment, a term made
up by software companies for entertainment games with possible benefits for educational
purposes.
Latest developments in the field of computer games often focus on the serious gaming market. An
increasing number of serious games are being introduced and implemented in different sectors,
such as defense, healthcare, engineering and education. These developments demand research
in order to investigate whether serious games are effective in training skills and gaining knowledge.
1.2 Comparing serious games to written texts
In the past (referring to the pre-computer period), learning processes were supported by teachers
and written texts. Educational games and serious games are in competition with written texts
regarding their ability to transfer knowledge. Teachers can be interactive, but most of the written
texts are not. The written texts, usually bundled in text books, are unilaterally and purely
informative. Because of the static appearance of written texts it can be difficult to motivate a
Serious games in learning processes 6
______________________________________________________________________________
student. Games can be more interactive than written texts, and the entertainment value of serious
games can motivate the student to learn. Another advantage of serious games compared to written
texts is that serious games comprise a virtual world that visualizes the subject matter. This helps
the student to remember and understand (Pandey & Zimitat, 2007).
Educational games have proved to be of a supporting value in learning processes. Kim & Chang
(2010) concluded that students with English as second language achieved better results on math
tests after playing computer math games. Virvou et al. (2005) also researched the educational
effectiveness of educational games. They concluded that educational virtual reality games
positively affect the student’s motivation and performance. While the effectiveness of educational
games has been the subject of several studies, serious games have not been studied yet.
Therefore in this research serious games will be compared to written texts to measure their ability
to transfer knowledge.
1.3 Cognitive, psychomotor and affective learning
Bloom’s Taxonomy on Teaching and Learning (1956) distinguishes three types of learning, namely
knowledge (cognitive learning), skills (psychomotor learning) and attitude (affective learning). In
this study, students either play a serious game or read a text, which both are aimed to transfer the
same knowledge, and then answer a number of questions on the subject matter of the game and
the text. The first type of learning, knowledge, will be tested by the number of correct answers a
student provides after playing the game versus reading a text. The second type of learning, skills,
will not be tested in this study. Lastly, the attitude of a student is measured by his motivation.
Motivation is examined by means of a survey.
1.4 Problem statement and research questions
The aim of this research is to provide information about the value of serious computer games in
learning processes. This will be determined by testing whether a serious game can be successfully
implemented in learning processes. In order to examine whether serious games contribute to
education, the following problem statement will be answered:
Problem statement:
“To what extent can serious games support learning processes?”
Linda Stege
7
______________________________________________________________________________
The following research questions will be answered:
Research question 1
What previous research has been conducted on the effectiveness of serious games in learning
processes?
Research question 2
To what extent are high school students who have specific knowledge supplied by a computer
game in a better position to answer questions about the topic, than students who learned the same
knowledge from a text?
Research question 3
To what extent do high school students who have learned specific knowledge supplied by a
computer game evaluate the learning tool more positively than students who learned from a text?
1.5 Outline
The rest of the thesis is organized as follows:
Chapter 2 reviews the concept of serious games. The advantages of serious games and the
concerns about serious games in classrooms as discussed in various literatures are covered in this
chapter. In Chapter 3 the method of the experiment is presented. The computer game, procedure
of the experiment and participants are elaborated. Chapter 4 presents the results of the
experiment. In Chapter 5 these results are discussed, as well as the limitations and future work of
this study. Finally, Chapter 6 concludes this thesis.
Serious games in learning processes 8
______________________________________________________________________________
Chapter 2: Background
To survey what research has already been conducted in the field of serious games a literature
study has been carried out. Section 2.1 discusses what the concept of serious games entails.
Section 2.2 examines previous research regarding serious games. In Sections 2.3 the advantages
of serious games compared to text books are discussed. The concerns about serious games in
classrooms are mentioned in Section 2.4.
2.1 Serious games
The concept of serious games has been explained as a combination of entertainment and
education in computer games. Serious games have a purpose beyond entertainment, for example
education, training, advertising and social change (Winn, 2008). Educational and entertaining
computer games have been researched well, but not much research has been conducted
concerning serious games, since serious game design is a relatively new discipline (Winn, 2008).
Brody (1993) notes that the combination of entertainment and education in computer games has
produced some not very-educational games and some not very-entertaining learning activities
(Virvou et al., 2005). Serious games should be a balance between entertainment and education,
and not (like Brody states) either too much entertainment or too much education. According to Gee
(2003, 2005) games present the challenges, support and feedback and are therefore enjoyable.
Bourgonjon et al. (2010) refer in their research to the technology acceptance model. This theory
reasons that technology is more useful when it is easy to use. The students in the research of
Bourgonjon et al. showed a preference for easy and clear computer games. Serious games should
be designed so that they can be used by students, even those with little or no knowledge of
computers (Brody, 1993). Entertainment games are more likely to be based on previous game
experience of the player than educational games. Educational games are in most cases based on
the idea that the player has no game experience. Since serious games are considered to be a
combination of both educational and entertainment games, a brief tutorial part should be included
even though the player is expected to already manage some gaming skills.
In this study it is being researched whether serious games indeed contribute to a student’s
knowledge, skills and motivation. This will be tested by comparing a group of participants who
played a serious game to a group of subjects who read a text.
Linda Stege
9
______________________________________________________________________________
2.2 Previous research regarding serious games
Nowadays computer games are of an influence for the educational sector, even though educators
have been ignoring computer games for a long period of time (Squire, 2003). Teachers tended to
stick to the old teaching methods, which do not involve computer games. As software companies
categorized games with possible effects for learning processes as edutainment, teachers started
using computer games in classrooms. In contrast to the growing developments of computer games
in education, very little research about the effectiveness of computer games in learning processes
has been conducted. One aspect of computer games for educational purposes that has been
investigated are graphics in educational games. With good graphics and game design the real
world and the virtual world come closer to each other. This can create more intense engagement
and experience. Benjamin (2010) has shown that for educational purposes realistic graphics are
beneficial as well, because some computer games offer spreadsheets to edit the (design) code. He
figured that any teacher, regardless of programming skills, is able to work with these spreadsheets
in order to suit the curriculum. Benjamin states that realism in educational games is a positive
influence on knowledge transfer, as long as some room for imagination is being left.
Eow et al. (2010) advocate stimulating game development in class rooms. They state that
developing computer games with tools such as GameMaker enhances students’ creative
perception. In this way computer games are used in a whole different way in education. Another
efficacy of computer games and education that has been well researched are the computermediated communication (CMC) and collaboration aspects of computer games. Bourgonjon et al.
(2008) state that the use of digital media reflects the desire of students to communicate with
friends. By communicating with others a collaboration can be realized. Gloor et al. (2008) suggest
that computer-mediated communication tools should be designed and taught to students.
Computer games including CMC could then be embedded to promote collaboration among
students and used for training collaboration skills to students.
For the deployment options of computer games mentioned above, computer games have proved
to be of a positive influence in class rooms. The actual learning features of computer games in
transferring knowledge will be investigated in this research, as well as the features that concern
motivation.
2.3 The pros of computer games
In most learning institutes, the curriculum offers almost no opportunity for a student’s own
interpretation of the study material. The teacher determines the framework of the curriculum and
therefore the students are passive recipients of the subject matter (Bowman, 1982). In this paper I
will refer to this static and passive environment as traditional schooling. There are rising concerns
that this traditional schooling is falling short in motivating and educating students (Svinicki, 1999).
In traditional schooling groups of students learn at one pace, regardless of achievement. In
Serious games in learning processes 10
______________________________________________________________________________
computer games the player decides how much or when he or she plays/learns. Students can play
computer games at their own pace and in most cases take all the time they need to complete
certain stages.
Students are most of the times not allowed to use each other as recourses, and therefore perform
in isolation. Games could offer a more challenging and collaborative environment to enhance the
learning process, because the players can mark their own playing strategies and in some games
even communicate or collaborate with other players. When the computer game players are
allowed to collaborate, they can work together by sharing tips and trading secrets (Squire, 2003).
This leads to the statement that games are a social medium providing the player with human-tohuman like interactions and emotional responses (Lieberman, 2006).
According to Winn (2008) games are effective at engaging students which makes them active
learners. Active learning (also referred to as learning by doing) means that the student must be
active in the construction of his or her own knowledge (Dewey, 1916). Active learning is considered
to be positive, because it has been shown to promote better recall, enjoyment and understanding
than traditional schooling (Gibbs, 1992; Mujis & Reynolds, 2001; Petty, 2004).
In computer games the player is able to visualize the environment, because the subject matter of
the computer game is visualized by graphics. These visualizations of the environment help the
player to master the subject matter and become more knowledgeable and skillful in the
environment (Squire, 2003). Traditional schooling rarely applies knowledge in dynamic contexts,
and therefore students are not being supported in developing these skills.
Games provide the player customized and rapid feedback (Lieberman, 2006). Positive feedback
(such as points, power, rank, etcetera) can encourage desired behaviors in real life. Success and
failure map directly to the player’s actions, because the player’s ego and self-image are invested in
the experience (Lieberman, 2006). A computer game could even provide role models for the
player, if the player learns from game characters and understands their behavioral experiences
(Lieberman, 2006).
Most children and adolescents like to play computer games (Virvou et al., 2005). If serious games
would support education, it could lead to a more entertaining way of learning and mastering difficult
subjects. If learning would become amusing, it should be easier for the educator to motivate the
student. The experiment of Virvou et al. (2005) showed that students of whom teachers thought
that they were not easily disciplined in class, were indeed able to focus on the game and keep
working without disturbing anyone. The behavior in class changed, because the students appeared
to be satisfied and interested in the educational content.
Osswald (2010) showed that prosocial video games have positive effects on prosocial behavior.
The helping behavior of participants who played a prosocial video game increased significantly
after playing the game. This could mean that the social behavior of a student is influenced by
computer games. Therefore, not only knowledge and skills can be learned via a computer game,
but also behavior.
Linda Stege
11
______________________________________________________________________________
2.4 Concerns about computer games in the classroom
Many educators have expressed that they are concerned about the implementation of computer
games in class rooms (Provenzo, 1991). The concerns discussed in this paper are about whether
serious games support learning in a more effective way than text books do. If in fact serious games
would turn out to be more supportive for learning processes, this could have an impact on the
traditional schooling. Technology would then perform a part of the traditional role of the teacher.
Zepp (2005) has researched the attitudes of the educators towards technology in class rooms. He
defines two groups of teachers, termed “the modernist line” and “the postmodernist line”. The
modernist line are teachers who solely see themselves as information and skills transmitters. The
modernists measure their success by the efficiency in the transmission of the information and
skills. Their counterargument to technology runs that teachers are better motivators than
machines. They state that teachers interact better with students than machines, because teachers
can sense emotional problems and learning difficulties (Zepp, 2005). The postmodernist line
consider teachers as much more than information transmitters. They see the educator as a
guidance counselor or a societal role model. The postmodernists are more likely to implement a
computer game in the curriculum, because they do not consider teachers as straightforward
information transmitters, but as much more. The postmodernist line is more open to considering
computer games as supporting factors for learning processes, instead of considering computer
games as possible replacements for teachers. If games would become a supporting factor in
learning, then teachers would serve as role models and transmitters of values instead of
information transmitters (Zepp, 2005). In this research I will not investigate whether a computer
game is better than, or equal to a teacher. The comparison will be between the computer game
and the traditional text books. If the comparison would be between teachers and the game, than
the aim of the game would be to replace the teacher (Virvou et al., 2005). The aim of serious
games in this research is to supplement traditional schooling.
Serious games in learning processes 12
______________________________________________________________________________
Chapter 3: Method
In this chapter the experimental setup is being described. The exact details and method of the
experiment are presented. In Section 3.1 the computer game “E and Eve’s Electrical Endeavors” is
introduced. Section 3.2 presents the exact procedure of the experiment. General information about
the participants of the experiment is mentioned in Section 3.3.
3.1 The serious game: E and Eve’s Electrical Endeavors
“E and Eve’s Electrical Endeavors” is an online computer game developed by the Eindhoven
University of Technology. The game focusses on helping the player to develop skills and general
knowledge about electrical engineering.
The game starts with a brief introduction in which the player is shown that the playable character is
trapped in electrical wires. The character has to move through the wires in order to escape. The
player has to solve issues with resistances, transistors and power shares while moving through the
wires (Figure 1).
Figure 1. E and Eve’s Electrical Endeavors (Eindhoven University of Technology, 2010) - Chapter 2, level 2.
On the low-middle of the screen the playable character is located, moving trough electrical wires. On the left
of the screen a transistor is seen.
Linda Stege
13
______________________________________________________________________________
After every completed level the encountered issues are explained (Figure 2). The game consists of
four chapters with each ten levels, except for the fourth chapter which includes only one level. In
this study only the first two chapters were played by the students. In the first chapter the player is
introduced to the controls and playing techniques. The students had to finish chapter one
completely in order to manage their playing skills. The second chapter teaches the player about
transistors. In this chapter the game introduces new subject material to the students, which they
did not learn by textbooks or teachers yet in their curriculum.
Figure 2. E and Eve’s Electrical Endeavors - Explanation Chapter 1, level 7
3.2 The procedure
To test to what extent the computer game “E and Eve’s Electrical Endeavors” is more suitable than
text books in transferring knowledge of physics to students, we conducted an experiment.
The experiment took place in a computer room at the participants’ high school. One classroom had
been reserved for this experiment, which could be divided into two sides. On each desk a
computer with an internet connection was installed. It was not previously determined which side of
the room would play the computer game and which side would read the text. The students in this
experiment were randomly divided into two groups. The experimental group played the computer
game and had to answer questions (Appendix I) based on the issues in the game. The control
group read the text equivalent (Appendix II) and answered the same questions (Appendix III) as
the experimental group. The correct answers for these assignments are presented in Appendix IV.
Serious games in learning processes 14
______________________________________________________________________________
The investigator introduced the purpose of the research and the overall process of the experiment
to the participants in Dutch. After this introduction the students were handed a paper instruction,
also written in Dutch. The instructions for both versions were structured equally, but referred to
either the computer game or the text. The printed instruction of the text group was followed by the
actual text and training exercises.
The experiment was divided into three phases, an introduction and a closing part (Table 1).
Table 1
Experimental setup
Phase
Time limit
(minutes)
Game group
Text group
Introduction
5
Instruction + assigning the groups
One
20
Playing the computer game (chapter Reading the text and solving the
1 and level 1 and 2 of chapter 2)
exercises
Two
20
Solving the assignments
Three
10
Answering the questions from the survey
Closure
5
Shut down computers and leaving the classroom
Total
60
In phase one the students either play the game or read the text. The time limit for this phase is set
to twenty minutes. In case the text group finished reading the text, they are supposed to notify the
researcher. The researcher would then hand out the assignments and collect the text. In case the
computer game group finished chapter one and the first two levels of chapter two, they had to
close the computer game before continuing with the assignments.
In phase two it is verified whether the students understood the computer game or the text by
answering written questions. The first question is therefore about the game skills (for the
experimental group) or the basics in the text (for the control group). The last few assignments are
supposed to be more difficult and are about a subject matter that is not yet familiar to the students.
The time limit for this phase is also set to twenty minutes. After completing the first two phases, the
students answered a survey (Appendix IV). In this survey the students’ game or reading skills and
motivation are being examined. The participants should be able to complete phase three within ten
minutes.
The experiment took place in computer class rooms, under observations of a researcher and
teacher. The students were allowed to collaborate during the first phase, in case they stalled.
Linda Stege
15
______________________________________________________________________________
3.3 The participants
In this experiment 187 third grade high school students (VWO) of two different schools
participated. 47 Percent of the participants were boys and 53 percent were girls, seven participants
did not fill in their sex (Table 2). The average age of the participants is 14.6 years. 97.8 of the
participants have a Dutch nationality. All the participants were third grade VWO students. 78.7
Percent of the participants had previous gaming experience. The participants were randomly
divided by either the researcher or the teacher into the two groups. 97 Participants (52%) were
assigned to the computer game group and 90 participants (48%) were assigned to the text group.
Table 2
Frequency table of the participants split by version
Version
Frequency
Percent
Valid Percent
Cumulative
Percent
Game group
Valid
Missing
Boy
48
49.5
52.2
52.2
Girl
44
45.4
47.8
100.0
Total
92
94.8
100.0
Missing
5
5.2
97
100.0
Boy
37
41.1
42.0
42.0
Girl
51
56.7
58.0
100.0
Total
88
97.8
100.0
Missing
2
2.2
90
100.0
Total
Text group
Valid
Missing
Total
Serious games in learning processes 16
______________________________________________________________________________
Chapter 4: Results
In this chapter the results of the experiment are presented. The results are divided into four
sections. In Section 4.1 the relation between the total correctly answered questions and the
version (computer game group versus text group) is presented. Section 4.2 focusses on the
differences in motivation for both groups. The motivation factor is analyzed gender specific in
Section 4.3. The gender specific analyzation has also been conducted for the knowledge factor in
Section 4.4. Section 4.5 presents the opinions of the participants on playing serious games in
classrooms more often. Analyses concerning the validity of the experiment are presented in
Section 4.6. An alpha level of .05 was used for all statistical tests.
4.1 Knowledge
To measure the relation between the total correctly answered questions and the version (computer
game group versus text group) a univariate analysis has been conducted. The relevant means are
displayed in Table 3. This analysis resulted into an F-test of 4.12. This reveals a significant
interaction between the computer game group and the text group in answering the questions, with
a significance of 0.04% (Table 4). The power of this analysis is .52. These results suggest that the
students who first played the computer game and then answered the questions, provided
significantly more correct answers than the students who read the text before answering the
questions. This shows that it is more effective to learn the given subject matter from the computer
game than from the text.
Table 3
Means Univariate Analysis between version and number of correct answers
N
Mean
Std. Deviation
Std. Error
Game group
96
3.31
1.18
0.12
Text group
89
2.96
1.22
0.13
Total
185
3.14
1.21
0.09
Linda Stege
17
______________________________________________________________________________
Table 4
Univariate Analysis between version and number of correct answers
Sums of
Squares
df
Mean Square
F
Sig.
5.9
1
5.90
4.12
0.04
Within Groups
262.45
183
1.43
Total
268.35
184
Between Groups
4.2 Motivation
The participants were asked whether they enjoyed their task. This motivation factor has been
analyzed using a Version (computer game group versus text group) x Question (liked the computer
game/ the text?) repeated measures ANOVA. The relevant means are displayed in Table 5.
Table 5
Means Univariate Analysis between version and motivation
N
Mean
Std. Deviation
Std. Error
Game group
96
2.82
0.83
0.09
Text group
90
3.12
0.78
0.08
Total
186
2.97
0.82
0.06
The univariate analysis revealed a significant interaction between version and motivation, F(1,184)
= 6.40, p = .01 (Table 6). The power of this analysis is .71. This means that the text group was
more positive about their text, than the computer game group was about their game. This result is
surprising, because computer games are supposed to be a better motivation factor than texts since
they are usually experienced as entertainment.
Table 6
Univariate Analysis between version and motivation
Sums of
Squares
df
Mean Square
F
Sig.
4.16
1
4.16
6.40
0.01
Within Groups
119.65
184
0.65
Total
123.81
185
Between Groups
Serious games in learning processes 18
______________________________________________________________________________
4.3 Gender specific motivation
The motivation factor has been analyzed gender specific as well. First only the boys were selected.
The relevant means are presented in Table 7.
Table 7
Means Univariate Analysis between version and motivation for boys only
N
Mean
Std. Deviation
Std. Error
Game group
47
2.81
0.88
0.13
Text group
37
2.95
0.71
0.12
Total
84
2.87
0.80
0.09
The interaction between version and motivation was not significant for the boys, F(1, 82) = .60, p
= .44 (Table 8). The power of this analysis is .12. Both the text group and the game group were
almost equally motivated.
Table 8
Univariate Analysis between version and motivation for boys only
Sums of
Squares
df
Mean Square
F
Sig.
Between Groups
0.39
1
0.39
0.60
0.44
Within Groups
53.17
82
0.65
Total
53.56
83
Secondly the girls were filtered. The relevant means are presented in Table 9. The univariate
analysis showed a significant interaction between version and motivation for girls, F(1, 93) = 3.975,
p = .049 (Table 10). The power of this analysis is .51. The girls were better motivated by the text
than by the computer game.
Linda Stege
19
______________________________________________________________________________
Table 9
Means Univariate Analysis between version and motivation for girls only
N
Mean
Std. Deviation
Std. Error
Game group
44
2.91
0.77
0.12
Text group
51
3.24
0.82
0.11
Total
95
3.08
0.81
0.08
Table 10
Univariate Analysis between version and motivation for girls only
Sums of
Squares
df
Mean Square
F
Sig.
Between Groups
2.51
1
2.51
3.975
0.049
Within Groups
58.81
93
0.63
Total
61.33
94
4.4 Gender specific knowledge
Considering the gender differences for the motivation factor, the knowledge factor has also been
analyzed gender specific. We first selected only the boys. There was a significant relationship
between the version and the total correct answers for boys, r = .23, p (one-tailed) < .05. This
means that the boys who played the computer game significantly gave better answers than the
boys who read the text. For the girls the correlation was not significant, r = .06, p (one-tailed) > .05.
For girls it does not matter whether they play the computer game or read the text concerning their
acquired knowledge.
4.5 Opinion on computer games
The participants were asked whether they would like to play serious games during class more
often. Table 11 shows that 78.7 percent of the participants respond positively to playing serious
games in school more often.
Serious games in learning processes 20
______________________________________________________________________________
Table 11
Frequency table more often serious games in classrooms
Valid
Missing
Total
Frequency
Percent
Valid Percent
Cumulative Percent
Yes
140
74.9
78.7
78.7
No
38
20.3
21.3
100.0
Total
178
95.2
100.0
9
4.8
187
100.0
Missing
4.6 Validity of the experiment
Further analysises have been conducted to guarentee the validity of the experiment. We first
checked whether the groups were equaly divided, therefore the last physics grade and the groups
were correlated. There is no significant relationship between the version and the last physics
grade, r = .013, p (one-tailed) > .05. This means that the groups are homogeneous concerning
their physics grade. Secondly we analyzed whether there were any remarkable symptoms
concerning the assignments, which could lead to the differences in achievement between the
groups. For assignment three the boys in the game group siginificantly performed better than the
text group, r = .24, p (one-tailed) < .05. Assignment four is also significantly better answered by the
game group, r = .012, p (one-tailed) < .05. This could mean that these questions are more difficult
or better explained by the computer game than by the text, but since those questions have four
response options instead of three, we may conclude that the participants who better managed the
subject matter overall performed better.
Linda Stege
21
______________________________________________________________________________
Chapter 5: Discussion
Serious games are a supporting factor in learning processes, though they are not always a better
motivation factor. It was not expected that the computer game was less liked than the text, but it
turned out that girls evaluated the computer game more negatively than the text. A possible
explanation is that this game concerned physics and electrical engineering, which are, in general,
subjects that interest Dutch girls less than boys (91 percent of the students of the faculty of
Electrical Engineering at the TU/e are men). Another possible explanation is that girls tend to show
less interest in computer games than boys anyway. These results are contrasting to previous
research conducted by Virvou (2005), Gibbs (1992) and Mujis & Reynolds (2001). Their studies
show that computer games in education do motivate the students.
Even though the survey showed that the participants were not better motivated by the game, the
researcher who observed the participants during the experiment noticed that the computer game
group immediately started playing the game while the text group was not motivated to start reading
the text at all. The text group had more complaints and asked more questions. Although the
participants were randomly divided into the two groups, most of the students indicated that they
would rather play the computer game than read the text.
This study focused on one particular serious game. The research could be extended by studying
different serious games. E and Eve’s Electrical Endeavors is a computer game concerning physics.
Serious games concerning language development, training skills (for example for defense) and
concerning general knowledge should be examined as well. In future research the results could
also be generated for psychomotor learning (Bloom, 1956). This means that the development of
the player’s skills would be examined.
In the experiment both the text group and the computer game group were situated in the same
room. This could make the text group feel subordinated to the game group since the game group is
the focus of the experiment, despite the random allocation of the groups. These feelings could
explain the higher motivation factor of the text group. The text group might have the urge to
perform better than the computer group as a result of reduction of cognitive dissonance.
In this research only the short term memory has been tested. The participants immediately
answered the questions after playing the computer game or reading the text. This way the effects
on a long term base are not being examined. In future research the same experiment could be
conducted and then after a period of time, for example one week, the students solve similar
assignments without first playing the game or reading the text.
The conclusions drawn from this research are valid, since the power of the analysis was never
below 0.5, except when the girls and boys were separately analyzed.
Serious games in learning processes 22
______________________________________________________________________________
Chapter 6: Conclusion
In Chapter 1 the problem statement and research questions are stated. In this conclusion these
questions will be answered.
Research question 1 is “What previous research has been conducted on the effectiveness of
serious games in learning processes?”. An extensive literature search makes clear that almost no
research has been conducted to study the effectiveness of serious and educational games in
learning processes. Research that has been done concerning computer games in classrooms
focuses on the influence of graphics and computer-mediated communication. Graphics have
proven to create more intense engagement if indeed the graphics look realistic. If a computer
game supports computer-mediated communication then the game is suitable to train collaboration
skills. A positive feature of computer games in schooling is that they are adaptive to the player, the
players can learn at their own pace.
Research question 2 is “To what extent are high school students who have specific knowledge
supplied by a computer game in a better position to answer questions about the topic, than
students who learned the same knowledge from a text?” We performed an experiment in which
187 third-grade VWO high-school students played a game or read a text on electrical engineering,
and then answered questions. The total number of correct answers for both groups were
compared. The boys who acquired their knowledge through playing the computer game were
better able to answer questions on the subject matter than the boys who studied the text. For the
girls we found no difference between using a computer game or a text to acquire knowledge.
Overall the computer game group scored significantly better than the text group. Therefore it may
be concluded that serious games are effective for transferring knowledge.
Research question 3 is “To what extent do high school students who have learned specific
knowledge supplied by a computer game evaluate the learning tool more positively than students
who learned from a text?”. After answering the questions the participants in the experiment filled
out a survey. In this survey they were asked whether they liked the computer game they played or
the text they read. It turned out that the text was evaluated more positively than the computer
game. This would mean that this text is a higher motivating factor than this computer game. This
was unexpected, because computer games are supposed to be entertaining. In order to find an
explanation for the low motivation factor concerning the computer game, the boys and girls were
separately analyzed. This showed that the boys did not have a specific preference for either the
game or the text. The girls on the other hand significantly preferred the text.
To answer the problem statement of this research “To what extent can serious games support
learning processes?” we conclude from the research questions that serious games are capable of
transferring knowledge to players. The particular serious game used in this study was found to be
even better suitable to transfer knowledge than the text which was written to transfer the same
knowledge.
Linda Stege
23
______________________________________________________________________________
References
Benjamin, T. (2010). eGames: Is imagination the forgotten ingredient? Computers in Human
Behavior, 26, 296-301.
Bloom, B. S. (1956). Taxonomy of educational objectives: The classification of educational goals.
Handbook I: Cognitive domain. New York: David McKay Co Inc.
Bourgonjon, J., Rutten, K., Vanhooren, S., & Soetaert, R. (2008). Games als & in educatie.
Bourgonjon, J., Valcke, M., Soetaert, R., & Schellens, T. (2010). Students' perceptions about the
use of video games in the classroom. Computers & Education, 54, 1145-1156.
Bowman, R. F. (1982). A Pac-Man theory of motivation. Tactical implications for classroom
instruction. Educational Technology, 22(9), 14-17.
Brody, H. (1993). Video Games that Teach? Technology Review, November/December, 51-57.
Dewey, J. (1916). Democracy and Education: Macmillan Company.
Eindhoven University of Technology, E. E. (2010). E and Eve's Electrical Endeavours. from http://
www.eeee.tue.nl
Eow, Y. L., Ali, W. Z. b. W., Mahmud, b. R., & Baki, R. (2010). Computer games development and
appreciative learning approach in enhancing students' creative perception. Computers &
Education, 54, 146-161.
Gee, J. (2003). What Video Games Have to Teach Us about Learning and Literacy. New York:
Palgrave McMillan.
Gee, J. (2005). Why Video Games are Good for Your Soul: Pleasure and Learning. Victoria:
Australia: Common Ground.
Gibbs, G. (1992). Improving the Quality of Student Learning. Bristol: UK: Technical and
Educational Services Ltd.
Gloor, P. A., Paasivaara, M., Schoder, D., & Willems, P. (2008). Finding collaborative innovation
networks through correlating performance with social network structure. International Journal of
Production Research, 46(5), 1357-1371.
Johnson, L., Vihjalmsson, H., & Marsella, S. (2005). Serious Games for Language Learning: How
Much Game, How Much AI? Paper presented at the Artificial Intelligence in Education: Supporting
Learning through Intelligent and Socially Informed Technology, 306-313.
Kim, S., & Chang, M. (2010). Computer Games for the Math Achievement of Diverse Students.
Educational Technology & Society, 13(3), 224-232.
Lieberman, D. (2006). What can we learn from playing interactive games? In P. Vorderer & J.
Bryant (Eds.). Playing video games: Motives, responses, and consequences: Mahwah, NJ:
Lawrence Erlbaum Associates.
Mujis, D., & Reynolds, D. (2001). Effective Teaching: Evidence Based Practice. London: UK: Paul
Chapman Publishing.
Serious games in learning processes 24
______________________________________________________________________________
Osswald, S. (2010). Effects of Prosocial Video Games on Prosocial Behavior. Journal of
Personality and Social Psychology, 98(2), 211-221.
Pandey, P., & Zimitat, C. (2007). Medical students’ learning of anatomy: memorisation,
understanding and visualisation. Medical Education, 41(1), 7-14.
Petty. (2004). Teaching Today: a practical guide 3rd Edition. Cheltenham: UK: Nelson Thornes.
Provenzo, E. F. (1991). Video kids: Making sense of Nintendo. Cambridge: Harvard University
Press.
Squire, K. D. (2003). Video Games in Education. International Journal of Intelligent Games &
Simulation, 2(1), 49-62.
Svinicki, M. D. (1999). New Directions in Learning and Motivation. New Directions for Teaching and
Learning, 80, 5-27.
Virvou, M., Katsionis, G., & Manos, K. (2005). Combining Software Games with Education:
Evaluation of its Educational Effectiveness. Educational Technology & Society, 8(2), 54-65.
Winn, B. M. (2008). The Design, Play, and Experience Framework Handbook of Research on
Effective Electronic Gaming in Education (pp. 1010-1024). Philadelphia: IGI Global Publication.
Zepp, R. A. (2005). Teachers' Perceptions on the Roles on Educational Technology. Educational
Technology & Society, 8(2), 102-106.
Linda Stege
25
______________________________________________________________________________
Appendices
The following appendices are attached:
• Appendix I: The assignments for the game group
• Appendix II: The text for the text group
• Appendix III: The assignments for the text group
• Appendix IV: Answers assignments
Serious games in learning processes 26
______________________________________________________________________________
Appendix I: The assignments for the game group
Games & Educatie
Je doet mee aan een onderzoek over computerspellen. We onderzoeken welk effect
computerspellen op het leerproces hebben. Kortom: in welke mate leer je iets van
computerspellen?
Je gaat dadelijk tien levels van het computerspel “E and Eveʼs Electrical Endeavors”
spelen.
Na het spelen van het spel beantwoord je 7 vragen over de onderwerpen die je in het spel
bent tegen gekomen. De vragen staan op de volgende pagina van dit boekje. Je mag de
vragen pas bekijken en beantwoorden als je alle tien de levels hebt uitgespeeld.
Als je klaar bent met het beantwoorden van de vragen vul je de enquête aan het einde van
dit boekje in.
Voor het spelen van het spel krijg je maximaal 20 minuten. Mocht je na 20 minuten nog
niet alle levels hebben gespeeld, kun je toch beginnen met het beantwoorden van de
vragen. Geef voor je aan de vragenlijst begint dan even aan tot welk level je het spel hebt
gespeeld.
Tijdens deze test mag je geen vragen stellen over het spel of de vragenlijst aan de leraar/
onderzoeker. Mocht je echt niet uit een level van het computerspel komen, kun je een
medeleerling om hulp vragen.
Sla deze pagina nog niet om, maar speel eerst de eerste tien levels van het
computerspel. Dit zijn alle levels (de cirkels) van hoofdstuk 1 en de eerste twee levels
(cirkels) van hoofdstuk 2.
Linda Stege
27
______________________________________________________________________________
Let op: ga alleen verder als je alle levels van hoofdstuk 1 hebt gespeeld en de eerste
2 levels van hoofdstuk 2.
Is de tijd voorbij en je hebt nog niet alle levels uitgespeeld? Noteer dan hieronder tot welk
level je bent gekomen (omcirkel het level dat je als laatste helemaal hebt voltooid):
Hoofdstuk:" 1"
2"
"
(omcirkel het hoofdstuk waarin je als laatste een level hebt voltooid)
Level:""
"
"
2"
"
3"
"
(omcirkel het level dat je als laatste helemaal hebt voltooid)
1"
"
4"
5"
6"
7"
8
Serious games in learning processes 28
______________________________________________________________________________
Ga verder naar de volgende pagina.
Linda Stege
29
______________________________________________________________________________
Opdrachten
Hieronder volgt een aantal opdrachten. Het zijn meerkeuzevragen, het antwoord hoef je
dus niet te motiveren. Zorg dat je bij iedere vraag één antwoord geeft en sla geen vragen
over.
Daarnaast zijn er nog enkele opmerkingen vergeleken met het spel:
- De bewegende druppels die je in het spel door de buizen zag lopen, stellen
elektrische stroom voor.
- De druk die je op sommige meters zag zijn te vergelijken met spanning
- Je kon de weerstand aanpassen door ʻvleugelachtige dingenʼ open of dicht te
klappen. We spreken van een hoge weerstand als deze vleugels uitgeklapt zijn en
van een lage weerstand wanneer deze vleugels ingeklapt zijn.
- De ʻschakelaarʼ die je in de eerste twee levels van hoofdstuk 2 hebt gezien, wordt in
het vervolg ʻtransistorʼ genoemd.
De eerste 4 opdrachten gaan over figuur 1, terwijl vraag 5 en 6 over figuur 2 gaan.
Stroom
R1
B
R2
Figuur 1: Schematische weergave van twee weerstanden
1) Als de weerstand R1 groter wordt, terwijl weerstand R2 gelijk blijft, wat gebeurt er
dan met de stroom die door weerstand R1 loopt?
a. De stroom wordt groter
b. De stroom blijft gelijk
c. De stroom wordt kleiner
2) Als de weerstand R1 groter wordt, terwijl weerstand R2 gelijk blijft. Wat gebeurt er
dan met de spanning op punt B?
a. De spanning op punt B wordt groter
b. De spanning op punt B blijft gelijk
c. De spanning op punt B wordt kleiner
Serious games in learning processes 30
______________________________________________________________________________
3) Hoe kan de maximale stroom door de weerstanden bereikt worden?
a. Door weerstand R1 heel groot te maken en R2 heel klein te maken.
b. Door weerstand R2 heel groot te maken en R1 heel klein te maken.
c. Door zowel weerstand R1 als R2 heel groot te maken.
d. Door zowel weerstand R1 als R2 heel klein te maken.
4) Op welk moment is de spanning op punt B het grootst?
a. Als beide weerstanden (R1 als R2) zo klein mogelijk zijn.
b. Als beide weerstanden (R1 als R2) zo groot mogelijk zijn.
c. Als weerstand R1 zo groot mogelijk is en weerstand R2 zo klein mogelijk is.
d. Als weerstand R2 zo groot mogelijk is en weerstand R1 zo klein mogelijk is.
Stroom
Stroom
R3
R1
Transistor
R2
Figuur 2: Schematische weergave van drie weerstanden en een transistor
De volgende twee vragen gaan over figuur 2.
5) Als de transistor ʻgeslotenʼ is (er loopt stroom in het rechtergedeelte), wat zou er
dan gebeuren als weerstand R2 heel erg klein zou worden?
a. De situatie blijft hetzelfde, de transistor blijft ʻgeslotenʼ."
b. De schakelaar zal openen zodat de stroom in de rechterkant onderbroken
wordt.
c. De situatie is afhankelijk van de weerstand R3
6) De transistor is ʻgeslotenʼ, dus er loopt een stroom door de rechterzijde. Wat
gebeurt er met de stroom in de rechterzijde wanneer de weerstand van R3
afneemt?
a. De stroom in de rechterzijde zal toenemen
b. Er zal nog een stroom lopen, maar minder sterk dan voorheen
c. Er zal geen stroom meer lopen
Linda Stege
31
______________________________________________________________________________
7)"
Stel je hebt een broertje of zusje die je uit zou moeten leggen wat elektrische
stromen en spanningen zijn, hoe zou je dit dan uitleggen? (gebruik maximaal 5
zinnen)
__________________________________________________________________
__________________________________________________________________
__________________________________________________________________
__________________________________________________________________
__________________________________________________________________
Serious games in learning processes 32
______________________________________________________________________________
Enquête
Hieronder volgt nog een aantal afsluitende vragen. Het invullen van de enquête kost
ongeveer 10 minuten. De enquête is anoniem; de leraar krijgt de antwoorden niet te zien.
Geslacht:"
"
Geboortedatum:"
Jongen"
Meisje""
(omcirkel het antwoord dat op jou van toepassing is)
____ - ____ - ________ "
(dd-mm-jjjj)
In welk land zijn je ouders / jijzelf geboren?! (kruis het antwoord aan dat hier van toepassing is)
Jij
Nederland
Suriname
Antillen (inclusief Aruba)
Marokko
Turkije
Voormalig Joegoslavië
Molukken
Een ander Europees land
Noord-Amerika, Oceanië (Australië,
Nieuw-Zeeland), Japan of Indonesië/
Nederlands Indië
Een ander land in Azië, Afrika of ZuidAmerika
Niet van toepassing
Weet niet
Moeder
Vader
Linda Stege
33
______________________________________________________________________________
Hieronder volgt een aantal vragen over het vak natuurkunde.
1. Ik vind het vak natuurkunde in vergelijking met andere vakken:!
(omcirkel het antwoord dat op jou van toepassing is)
Helemaal niet leuk" "
niet leuk"
"
gemiddeld"
"
leuk" "
heel leuk
2. Welk cijfer heb je voor je laatste natuurkunde-toets gehaald (waarvan je het
resultaat binnen hebt)? ! !
(omcirkel het antwoord dat op jou van toepassing is)
0"
1"
2"
3"
4"
5"
6"
7"
8"
9"
10"
weet ik niet
Hieronder volgt een aantal vragen over computerspellen.
3. Ik vind dit computerspel:!
!
(omcirkel het antwoord dat op jou van toepassing is)
Helemaal niet begrijpelijk" niet begrijpelijk"
4. Ik vind dit computerspel:!
Helemaal niet leuk" "
!
niet leuk"
gemiddeld"
begrijpelijk"
heel begrijpelijk
(omcirkel het antwoord dat op jou van toepassing is)
"
gemiddeld"
"
leuk" "
heel leuk
5. Kun je aangeven waarom je het computerspel wel/ niet leuk vond?
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
6. Als je iets aan het spel dat je zojuist gespeeld hebt mocht veranderen, wat zou je
dan aanpassen?
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
7.Hoeveel uur speel je gemiddeld per dag computerspellen? (omcirkel het antwoord dat op jou
van toepassing is)
Ik speel nooit computerspellen"
0 tot 1""
1 tot 2""
2 tot 4""
meer dan 4 uur
Serious games in learning processes 34
______________________________________________________________________________
8. Zou je vaker in de natuurkunde-les leerstof uitgelegd willen krijgen met behulp
van computerspellen? (kruis het antwoord aan dat op jou van toepassing is en motiveer je antwoord)
Ja, want:
________________________________________________________________________
________________________________________________________________________
Nee, want:
________________________________________________________________________
________________________________________________________________________
Bedankt voor je deelname aan het onderzoek.
Naar waarschijnlijkheid zijn de resultaten van het onderzoek in juli 2011 beschikbaar.
Mocht je benieuwd zijn naar de uitkomsten van het onderzoek kun je hieronder je emailadres achterlaten.
E-mail adres: ____________________________________________
"
Ik wil graag de uitkomst van het onderzoek toegemaild krijgen.
Linda Stege
35
______________________________________________________________________________
Appendix II: The text for the text group
Games & Educatie
Je doet mee aan een onderzoek over computerspellen. We onderzoeken welk effect
computerspellen op het leerproces hebben. Kortom: in welke mate leer je iets van
computerspellen?
Je krijgt dadelijk een tekst te lezen, zoals je deze ook tegenkomt in natuurkunde boeken.
Lees deze tekst zorgvuldig door en maak de oefeningen die je tegenkomt.
Na het lezen van de tekst beantwoord je 7 vragen over de onderwerpen die je in de tekst
bent tegen gekomen. De vragen staan in een ander boekje. Je kunt je hand opsteken als
je de tekst hebt gelezen, dan krijg je het opdrachtenboekje. Je mag niet meer terugkijken
naar de tekst als je aan de vragen bent begonnen, dus lees de tekst goed door.
Als je klaar bent met het beantwoorden van de vragen vul je de enquête aan het einde van
dit boekje in.
Voor het lezen van de tekst krijg je maximaal 20 minuten. Mocht je na 20 minuten nog niet
de gehele tekst hebben gelezen, kun je toch beginnen met het beantwoorden van de
vragen. Geef voor je aan de vragenlijst begint dan even aan tot en met welke bladzijde je
de tekst hebt gelezen.
Tijdens deze test mag je geen vragen stellen over de tekst of de vragenlijst aan de leraar /
onderzoeker. Mocht je echt niet uit de tekst of een oefenopdracht komen, kun je een
medeleerling om hulp vragen.
Serious games in learning processes 36
______________________________________________________________________________
Informerende tekst over elektrische netwerken
Inclusief oefenopgaven
Stromende lucht, zoals wind, kun je niet zien. Enkel de gevolgen van luchtstromen zijn
zichtbaar. Zo is het gevolg van wind te merken aan wapperende vlaggen, bewegende
takken en opvliegende blaadjes. De sterkte van de wind, de windkracht, is ook
verschillend. Zo is er op sommige dagen een zacht briesje, terwijl je andere dagen hard
tegen de wind in moet fietsen.
Alle luchtstromen, en dus ook wind, stromen van een gebied met een hoge luchtdruk naar
een gebied met een lagere luchtdruk. Dit verschil in luchtdruk wordt ook wel drukverschil
genoemd.
De werking van elektrische stromen is te vergelijken met windstromen. Bij elektrische
schakelingen loopt er ook een stroom. Alleen is dit een stroom van elektronen. Wanneer
er meer elektronen stromen, is de stroomsterkte hoger, vergelijkbaar met de windkracht.
Bij elektrische stromen heb je ook iets wat te vergelijken is met hoge en lage luchtdruk,
bovendien loopt de stroom ook van hoog naar laag. Het verschil in luchtdrukken wordt bij
luchtstromen drukverschil genoemd, bij elektrische stromen wordt dit ʻspanningʼ genoemd.
Wanneer we kijken naar een stroomdraad, zien we een aantal effecten. Wanneer een
stroomdraad plots onderbroken wordt, bijvoorbeeld doordat iemand de draad doorknipt,
zal er geen stroom meer lopen. Dit komt omdat de elektronen tussen de doorgeknipte
draden niet in staat zijn om dat gebied te overbruggen. De weerstand tussen de uiteinden
van de doorgeknipte draad is veel te groot voor de elektronen.
De weerstand in een draad kan ook kleiner zijn, zodat elektronen nog wel naar de
overkant kunnen komen. Dit zie je bijvoorbeeld wanneer er tussen de losgeknipte draden
weer een draad wordt geplaatst die een stuk dunner is dan rest van de draad. De
elektronen kunnen nog wel naar de overkant, maar ze moeten door een stuk waar het
behoorlijk wat smaller is. Daarom zullen er minder elektronen tegelijk naar de overkant
kunnen. De stroomsterkte neemt dus af. We zeggen nu dat de weerstand van dit stukje
draad groter is dan de weerstand van de rest van de draad.
Vraag 1:
Wanneer er geen spanning over de uiteinden van een stuk draad staat, loopt er dan een
stroom?
a) Ja, er loopt een stroom want er zijn altijd elektronen die naar de andere kant
willen
b) Nee, er loopt geen stroom omdat er geen spanning (dus geen ʻdrukverschilʼ)
staat tussen de uiteinden. Elektronen voelen dan geen druk om naar de andere
kant te gaan.
c) Of er stroom loopt is enkel afhankelijk van de weerstand van de draad. Als de
weerstand klein genoeg is, kan er een stroom lopen.
Linda Stege
37
______________________________________________________________________________
Het juiste antwoord op vraag 1 is B. Bekijk of je het juiste antwoord hebt gegeven en lees
zo nodig de tekst nog een keer door.
Weerstanden
Wanneer we verder kijken naar weerstanden, kunnen we dit schematische weergeven
door een rechthoekig blokje tussen een draad, zie figuur 1. Hierbij is ook de richting van
de elektrische stroom aangegeven door een pijl met de tekst ʻStroomʼ.
Stroom
R1
Figuur 1: Een schematische weergave van een weerstand, genaamd R1
Het is ook mogelijk om weerstanden aan elkaar te koppelen. Dit kan op twee manieren, in
serie of parallel. Deze verschillende vormen zullen we kort bespreken.
Wanneer weerstanden in serie geplaatst zijn (zie figuur 2), is de stroom door beide
weerstanden gelijk. Zoals je eerder gelezen hebt, neemt de stroomsterkte af wanneer een
weerstand groter wordt. De stroomsterkte door de draad van figuur 2 wordt dus kleiner
wanneer bijvoorbeeld R2 groter wordt. Wanneer R1 niet evenveel weerstand geeft als R2
is het zo dat de spanning over beide weerstanden niet gelijk is, maar de stroom blijft altijd
gelijk.
Wanneer we de spanning tussen de twee weerstanden (zie figuur 2) bekijken, zien we dat
dit toeneemt wanneer de weerstand van R2 groter wordt. Dit kan je voorstellen doordat de
elektronen meer weerstand bij R2 ervaren en gedeeltelijk blijven ʻhangenʼ voor de
weerstand R2.
Wanneer weerstand R2 kleiner wordt, gebeurt het tegenovergestelde en zal de spanning
tussen de weerstanden afnemen.
Stroom
R1
R2
Figuur 2: Een schematische weergave twee in serie geschakelde weerstanden, genaamd R1 en R2
Wanneer weerstanden parallel geplaatst zijn (zie figuur 3), is de stroom door beide
weerstanden doorgaans niet gelijk. Wanneer R2 minder weerstand heeft dan R1, zal er
meer stroom via de ʻgemakkelijkeʼ weg gaan. Er zal dus in verhouding meer stroom door
R2 dan door R1 gaan. Toch is de spanning over beide weerstanden wel gelijk, dit is hét
kenmerk van een parallelschakeling.
Kortom, bij een serieschakeling is de stroom van beide weerstanden altijd gelijk, maar niet
altijd de spanning. Terwijl bij een parallelschakeling de spanning altijd gelijk is, maar niet
altijd de stroom.
Serious games in learning processes 38
______________________________________________________________________________
Stroom
R2
R1
Figuur 3: Een schematische weergave twee parallel geschakelde weerstanden, genaamd R1en R2
Natuurlijk zijn er ook combinaties van serie en parallelschakelingen te bedenken (zie figuur
4). Hierbij staat R1 ten opzichte van de bundeling van R2 en R3 in serie, terwijl R2 en R3
onderling parallel staan. Wanneer we de eigenschappen van beide typen schakelingen
toepassen kunnen we tot de volgende conclusie komen:
• De stroom door R1 is hetzelfde als de stroom door R2 en R3 gezamenlijk
• De spanning over R2 is hetzelfde als de spanning over R3
Stroo m
R2
R1
R3
Figuur 4: Een schematische weergave van zowel parallel als serie geschakelde weerstanden, genaamd R1,R2 en
R 3.
Vraag 2:
Bekijk de schakeling uit figuur 5. Wat zou er gebeuren als zowel weerstand R1 als R2
groter worden, wanneer (1) de stroom die de draad inkomt gelijk blijft, maar de spanning
niet? En wat als (2) de spanning over de uiteinden van de draad gelijk blijft, maar de
stroom niet?
a) (1) De spanning over R1 en R2 wordt kleiner en (2) de
stroom door de hele
B
schakeling wordt kleiner"
b) (1) De spanning over R1 en R2 wordt kleiner en (2) de stroom door de hele
schakeling wordt groter
c) (1) De spanning over R1 en R2 wordt groter en (2) de stroom door de hele
schakeling wordt kleiner
d) (1) De spanning over R1 en R2 wordt groter en (2) de stroom door de hele
schakeling wordt groter
Stroo m
R1
R3
R2
R4
Figuur 5: Schema van vier verschillende weerstanden
Linda Stege
39
______________________________________________________________________________
Het juiste antwoord op vraag 2 is: C. Bekijk of je het juiste antwoord hebt gegeven en lees
zo nodig de tekst nog een keer door.
Transistor
Een andere belangrijke bouwsteen binnen de elektronica is de transistor, waarbij in figuur
6 en 7 een schematische weergave van gegeven is. De transistor is te vergelijken met een
schakelaar. Bijvoorbeeld een schakelaar om de verlichting aan te zetten. Een belangrijk
verschil is dat deze schakelaar aangestuurd wordt door de hoeveelheid stroom die op punt
A naar punt C (zie figuur 6) van de transistor loopt. Wanneer de stroom die daar loopt
hoog genoeg is, gaat de transistor aan de andere kant geleiden en kan er een stroom
lopen tussen B en C. Tot slot moet in de gaten gehouden worden dat de stroom die van A
naar C loopt in het ideale geval veel kleiner is dan de stroom van B naar C.
Er zijn dus twee standen waar de transistor in kan staan; de open en de gesloten stand.
Deze standen zijn vergelijkbaar met een lichtknop. Wanneer de transistor in de stand
ʻopenʼ staat, loopt er te weinig stroom van A naar C en loopt er dus géén stroom van B
naar C. Wanneer we dit vergelijken met een lichtschakelaar druk je te zacht op het
lichtknopje en gaat de lamp dus niet branden. (zie figuur 6)
Wanneer de transistor in de stand ʻgeslotenʼ staat, loopt er voldoende stroom van punt A
naar punt C en loopt er dus wél een (grotere) stroom van B naar C. Wanneer we dit
wederom vergelijken met een lichtschakelaar heb je hard genoeg gedrukt op de
lichtschakelaar en gaat de lamp dus branden. (zie figuur 7)
Wanneer er de transistor gesloten is (ʻhet licht is dus aanʼ) gaat de transistor automatisch
in de ʻopenʼ stand (ʻhet licht gaat uitʼ) als de stroom die van A naar C loopt te laag wordt.
B
A
C
Figuur 6: Schematische weergave van een
transistor in ‘open’ stand. De lamp brand dus niet.
Serious games in learning processes 40
______________________________________________________________________________
"
"
Vraag 3:
In figuur 8 is een transistor met een weerstand gecombineerd. In de gestelde situatie staat
de transistor nog ʻopenʼ, er loopt dus nog geen stroom van B naar C. Wanneer
aangenomen wordt dat er stroom loopt vanaf punt D, hoe moet dan de weerstand R1
aangepast worden om de transistor te sluiten?
a) De weerstand moet groter gekozen worden
b) De weerstand moet kleiner gekozen worden
B
Stroo m
A
D
R1
C
Figuur 8: schematische weergave van een weerstand met een transistor
Linda Stege
41
______________________________________________________________________________
Het juiste antwoord op vraag 3 is B. Bekijk of je het juiste antwoord hebt gegeven en lees
zo nodig de tekst nog een keer door.
Als je de tekst volledig hebt doorgelezen, leg deze dan met deze pagina boven op de
rechterhoek van je tafel. Vraag aan de onderzoeker het opdrachtenboekje. Je kunt nu de
eindopdrachten maken. Je mag tijdens het maken van die opdrachten niet meer terug
kijken in dit boekje.
Serious games in learning processes 42
______________________________________________________________________________
Appendix III: The assignments for the text group
Games & Educatie
Het opdrachtenboekje.
Let op: ga alleen verder als je de tekst hebt gelezen en alle oefenopgaven hebt
gemaakt.
Is de tijd voorbij en je hebt nog niet de gehele tekst gelezen? Noteer dan hieronder tot
welke bladzijde je bent gekomen:
Bladzijde:"
1"
2"
3"
4"
5"
6"
(omcirkel de bladzijde die je als laatste helemaal
hebt voltooid)
Linda Stege
43
______________________________________________________________________________
Opdrachten
Hieronder volgt een aantal opdrachten. Het zijn meerkeuzevragen, het antwoord hoef je
dus niet te motiveren. Zorg dat je bij iedere vraag één antwoord geeft en sla geen vragen
over. Je mag bij het beantwoorden van deze opdrachten niet meer terugkijken naar de
tekst of oefenopdrachten.
De eerste 4 opdrachten gaan over figuur 1, terwijl vraag 5 en 6 over figuur 2 gaan.
Stroom
R1
B
R2
Figuur 1: Schematische weergave van twee weerstanden
1) Als de weerstand R1 groter wordt, terwijl weerstand R2 gelijk blijft, wat gebeurt er
dan met de stroom die door weerstand R1 loopt?
a. De stroom wordt groter
b. De stroom blijft gelijk
c. De stroom wordt kleiner
2) Als de weerstand R1 groter wordt, terwijl weerstand R2 gelijk blijft. Wat gebeurt er
dan met de spanning op punt B?
a. De spanning op punt B wordt groter
b. De spanning op punt B blijft gelijk
c. De spanning op punt B wordt kleiner
3) Hoe kan de maximale stroom door de weerstanden bereikt worden?
a. Door weerstand R1 heel groot te maken en R2 heel klein te maken.
b. Door weerstand R2 heel groot te maken en R1 heel klein te maken.
c. Door zowel weerstand R1 als R2 heel groot te maken.
d. Door zowel weerstand R1 als R2 heel klein te maken.
Serious games in learning processes 44
______________________________________________________________________________
4) Op welk moment is de spanning op punt B het grootst?
a. Als beide weerstanden (R1 als R2) zo klein mogelijk zijn.
b. Als beide weerstanden (R1 als R2) zo groot mogelijk zijn.
c. Als weerstand R1 zo groot mogelijk en weerstand R2 zo klein mogelijk is.
d. Als weerstand R2 zo groot mogelijk en weerstand R1 zo klein mogelijk is.
Figuur 2: Schematische weergave van drie weerstanden en een transistor
De volgende twee vragen gaan over figuur 2.
5) Als de transistor ʻgeslotenʼ is (er loopt stroom in het rechtergedeelte), wat zou er
dan gebeuren als weerstand R2 heel erg klein zou worden?
a. De situatie blijft hetzelfde, de transistor blijft ʻgeslotenʼ."
b. De schakelaar zal openen zodat de stroom in de rechterkant onderbroken
wordt.
c. De situatie is afhankelijk van de weerstand R3
6) De transistor is ʻgeslotenʼ, dus er loopt een stroom door de rechterzijde. Wat
gebeurt er met de stroom in de rechterzijde wanneer de weerstand van R3
afneemt?
a. De stroom in de rechterzijde zal toenemen
b. Er zal nog een stroom lopen, maar minder sterk dan voorheen
c. Er zal geen stroom meer lopen
Linda Stege
45
______________________________________________________________________________
7)"
Stel je hebt een broertje of zusje die je uit zou moeten leggen wat elektrische
stromen en spanningen zijn, hoe zou je dit dan uitleggen? (gebruik maximaal 5
zinnen)
__________________________________________________________________
__________________________________________________________________
__________________________________________________________________
__________________________________________________________________
__________________________________________________________________
Serious games in learning processes 46
______________________________________________________________________________
Enquête
Hieronder volgen nog een aantal afsluitende vragen. Het invullen van de enquête kost
ongeveer 10 minuten. De enquête is anoniem; de leraar krijgt de antwoorden niet te zien.
Geslacht:"
"
Geboortedatum:"
Jongen"
Meisje""
(omcirkel het antwoord dat op jou van toepassing is)
____ - ____ - ________ "
(dd-mm-jjjj)
In welk land zijn je ouders / jijzelf geboren?! (kruis het antwoord aan dat hier van toepassing is)
Jij
Nederland
Suriname
Antillen (inclusief Aruba)
Marokko
Turkije
Voormalig Joegoslavië
Molukken
Een ander Europees land
Noord-Amerika, Oceanië (Australië,
Nieuw-Zeeland), Japan of Indonesië/
Nederlands Indië
Een ander land in Azië, Afrika of ZuidAmerika
Niet van toepassing
Weet niet
Moeder
Vader
Linda Stege
47
______________________________________________________________________________
Hieronder volgt een aantal vragen over het vak natuurkunde.
1.Ik vind het vak natuurkunde in vergelijking met andere vakken:!
(omcirkel het antwoord dat op jou van toepassing is)
Helemaal niet leuk" "
niet leuk"
"
gemiddeld"
"
leuk" "
heel leuk
2. Welk cijfer heb je voor je laatste natuurkunde-toets gehaald (waarvan je het
resultaat binnen hebt)? ! !
(omcirkel het antwoord dat op jou van toepassing is)
0"
1"
2"
3"
4"
5"
6"
7"
8"
9"
10"
weet ik niet
Hieronder volgt een aantal vragen over de tekst met de oefenopdrachten die je zojuist
gelezen hebt.
3. Ik vind het lezen van deze tekst:
Helemaal niet leuk" "
niet leuk"
4.Ik vind deze tekst:!
!
Helemaal niet begrijpelijk
(omcirkel het antwoord dat op jou van toepassing is)
"
gemiddeld"
"
leuk" "
heel leuk
(omcirkel het antwoord dat op jou van toepassing is)
niet begrijpelijk"
gemiddeld
begrijpelijk"
heel begrijpelijk
5. Kun je aangeven waarom je de tekst wel/ niet begrijpelijk vond?
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
6. Als je iets aan de tekst die je zojuist gelezen hebt mocht veranderen, wat zou je
dan aanpassen?
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
Hieronder volgt een aantal vragen over computerspellen.
Serious games in learning processes 48
______________________________________________________________________________
7. Hoeveel uur speel je gemiddeld per dag computerspellen? (omcirkel het antwoord dat op
jou van toepassing is)
Ik speel nooit computerspellen"
0 tot 1""
1 tot 2""
2 tot 4""
meer dan 4 uur
8. Zou je vaker in de natuurkunde-les leerstof uitgelegd willen krijgen met behulp
van computerspellen? (kruis het antwoord aan dat op jou van toepassing is en motiveer je antwoord)
Ja, want:
_______________________________________________________________________
_______________________________________________________________________
Nee!
, want:
_______________________________________________________________________
_______________________________________________________________________
Bedankt voor je deelname aan het onderzoek.
Naar waarschijnlijkheid zijn de resultaten van het onderzoek in juli 2011 beschikbaar.
Mocht je benieuwd zijn naar de uitkomsten van het onderzoek kun je hieronder je emailadres achterlaten.
E-mail adres: ____________________________________________
"
Ik wil graag de uitkomst van het onderzoek toegemaild krijgen.
Linda Stege
49
______________________________________________________________________________
Appendix IV: Answers assignments
1) C, the current through both resistors is equal and the total resistance increases. Therefore
the total current decreases.
2) C, the voltage across R1 increases so voltage at point B decreases.
3) D, the current through both resistors is equal and the current is maximal if the total
resistance is minimal.
4) D, the minimal voltage across R1 and maximal voltage across R2.
5) B, a very small resistance R2 is almost short circuiting. Almost all current flows through R2.
The transistor will not be ‘on’.
6) A, the current through R3 does not determine the state of the transistor. When the
resistance decreases, the current through the right side of Figure 2 will increase.
Download