× U = 12V en I = 3A × 12 R= =4Ω 3 U R= I U = 12V en I = 3A U R= I

advertisement
Algebra 2 - Formules omzetten 1
Vermenigvuldigen en delen
Versie 2a - 28 / 03 / 2007
In techniek wordt vaak gebruik gemaakt van formules. Met die
formules kun je bepaalde berekeningen maken. Soms is het handig
die formules om te zetten in een gelijkwaardige formule.
Een bekend voorbeeld is de formule, die wordt aangeduid met ‘De
wet van Ohm’: U = I  R
Als je waarden invult voor I en R krijg je als uitkomst de waarde van
U. Je moet dan nog wel de juiste eenheden achter het antwoord
zetten.
Voorbeeld 1:
Men heeft een schakeling gebouwd met een voeding, een
Ampèremeter, een Voltmeter en een weerstand. Zie figuur 1.
Je meet een stroomsterkte van 3 Ampère en een spanning van 12
Volt. Bereken de grootte van de weerstand R.
Uitwerking:
U = 12V en I = 3A
Vul dit in in de formule U = I  R
Je krijgt dan: 12 = 3× R
R=
Ofwel:
R
A
V
figuur 1
R
I=3A
A
V
U = 12 V
figuur 2
12
= 4Ω
3
Het kan ook anders!
Je kunt de formule U = I  R omvormen tot de gelijkwaardige
formule R =
U
.
I
Vul je dan de waarden voor U en I in, dan krijg je meteen de
waarde voor R.
Uitwerking 2:
U = 12V en I = 3A
Vul dit in in de formule R =
Je krijgt dan:
R=
U
I
12
= 4Ω
3
Conclusie:
Bij U = I  R horen twee gelijkwaardige formules:
R=
U
U
en I = .
I
R
Er zijn meer manieren om een formule te verbouwen.
Methode 1: Gevoelsmatig
Vul een paar eenvoudige getallen in de gegeven formules en
bedenk welke andere sommen je met die getallen kunt maken.
© 2007 Good Practice Masters, Tiel
1
Toolbox Exact – Algebra 2 – Formules omzetten 1
Methode 2: Algebraïsch
Je begint met: U = I  R
Deel aan beide zijden door het getal I.
Je krijgt dan:
Dus:
U IR
=
I
I
U I R
U
=
= R ofwel R =
I
I
I
Methode 3: Met ‘de driehoek’
Stap 1a:
Zet de formule U = I  R in een driehoek.
Stap 1b:
Zet U boven de streep en I en R onder de streep.
Stap 2a:
Je wilt de formule voor R. Dek dan de R af met één
vinger.
Stap 2b:
De rest van de driehoek geeft je de formule voor R:
R=
1
Gegeven is de formule
a
b
2
U
I
Stap 1
Stap 2
F = m a .
Welke formule kun je hieruit afleiden voor m? Gebruik één van de
3 hierboven beschreven methoden.
Welke formule kun je bedenken voor a ?
Gegeven is de formule c = p  V .
a
b
Welke formule kun je hieruit afleiden voor p ?
Welke formule kun je bedenken voor V ?
3
Gegeven is de formule omtrek  = 2    r .
Welke formule kun je bedenken voor r ?
4
Gegeven is de formule l = l    T .
a
b
c
Welke formule kun je bedenken voor l ?
Welke formule kun je hieruit afleiden voor  ?
Welke formule kun je bedenken voor T ?
Voorbeeld 2:
Gegeven is de formule a =
F
. Leid hieruit de formule voor m af.
m
Uitwerking 1: Algebraïsch
Vermenigvuldig beide zijden van het =-teken met m.
F
m
m
F
Dit geeft::
a  m =  m of a  m = F
m
Deel beide zijden van het =-teken met a.
a× m F
Je krijgt dan:
=
a
a
Je krijgt dan:
am=
© 2007 Good Practice Masters, Tiel
2
Toolbox Exact – Algebra 2 – Formules omzetten 1
Dit geeft::
a ×m F
F
=
of m =
a
a
a
Uitwerking 2: Met ‘de driehoek’
Vermenigvuldig beide zijden van het =-teken met m.
F
m
m
F
Dit geeft::
a  m =  m of a  m = F of F = m  a
m
Zet dit in de driehoek en dek de m af met één vinger.
F
De formule wordt dan:
m=
a
Je krijgt dan:
5
Gegeven is de formule
a
b
6
p=
ρ=
Stap 2
F
.
A
m
.
V
Welke formule kun je hieruit afleiden voor m?
Welke formule kun je bedenken voor V?
Gegeven is de formule v =
a
b
Stap 1
Welke formule kun je hieruit afleiden voor F ? Gebruik één van de 3
hierboven beschreven methoden.
Welke formule kun je bedenken voor A?
Gegeven is de formule
a
b
7
am=
s
.
t
Welke formule kun je bedenken voor s ?
Welke formule kun je hieruit afleiden voor t ?
© 2007 Good Practice Masters, Tiel
3
Toolbox Exact – Algebra 2 – Formules omzetten 1
Download