Introduction to BBMI-Omics P. Eline Slagboom Leiden University Medical Center BBMRI 2.0 Infrastructure connects: Linkage to medical socioeconomic\ registries Communication to donors and public Science Communication Maps, Atlases Methodology Training Collaboration with Industry Tissue portals BBMRI 2.0 Infrastructure sharing Data & Methodology Ethical/legal Issues Existing Biobank Data BW/Age/menopause Body composition Medication Use Lifestyle and Behavior Health&Disease phenotypes Omics data GoNl DNA seq RNA seq DNA methylation Metabolomics Imaging data BBMRI-Omics genomic markers, biomarkers, biology N=100,000 N=3,500 BIOS consortium N=2,000 BIOS consortium N=40,000 METABOLomics consortium N>250,000 Topic Study Migrain LUMINA/CHARM/RVCL Follow Up (y) Cases NTR VU 4.4 ERF EUMC Dementia VUMC Alzheimer 3 EUMC dementia Depression 897 1000 360 1000 1100 400 1000 1000 1200 400 NTR VU 4.4 1000 1000 900 1000 All cohorts LLS LUMC 10 998 2313 EUMC 85+ 1-11 400 1200 Alpha/Omega MUMC 5.5 459 476 900 STEMI UMCG 400 UNCORBIO UMCU 3 PROSPER LUMC 3.2 418 7 145 Type 2 Diabetes CODAM MUMC Maastricht Study MUMC DZS West-Friesland VUMC GARP LUMC 1200 10 1000 500 2-6 RAAK-PAPRIKA LUMC LUMC VU VUMC EUMC UMCG MUMC WUR AMC RUMC RIVM 2030 476 2030 Disease-specific 1000 Generic profiles 6.6 793 CHECK 8 981 LifeLines 4 -> 30 cohorts 412 EUMC OA 500 FG 579 854 HELUIS AMC Omics 125 6 CardioVascular Disease BIOMArCS EUMC Osteoarthritis 439 NESDA VU EUMC depression Mortality Ageing Controls 500 1500 BBMRI 2.0 Sharing and Steering BBMRI 2.0 WP2 leaders Eline Slagboom, Dorret Boomsma Cornelia van Duijn Marian Beekman (coordinator) Connection/meetings with WP 3-6 leaders to establish cross links NL Cohorts BIOS MT Bas Heijmans Lude Franke Metabolomics MT Marleen van Greevenbroek Marije Doppenberg Molecular variables : ‘Omics’ Epigenome Immune Profiling Gut microbiome Integrate studies into different relationships BBMRI-OMICS: Warehouse of data shared and used by the community http://www.bbmri.nl/omics/ http://www.bbmri.nl/omics/ BBMRI-Omics overview of data Select omics data type(s) of interest Select biobank of interest Sample makeup of selected biobanks Age distribution Erik van den Akker Make a score per individual ; compare to traditional markers; multiple sampling Jurriaan Barkey-Wolf 1H-NMR metabolomics platform Metabolic health ; well-standardized; 20 euro/sample 7 Diseases; 22 cohorts; 25.000 Dutch Caucasians Ovelapping (Generic) risk profiles Type 2 Diabetes Cardiovascular Disease Osteoarthritis Metabolome Dementia N=25.000 Depression Migraine Ageing Mortality Metabolomics as generic markers M/CVD/T2D/Dep > M_HDL_C,CE,FC M/CVD/T2D/OA > IDL_TG% + L_LDL_TG% M/CVD/Mig/OA > PUFA/FA M/AD/Mig/OA > S_HDL_FC% M/T2D/Dep/OA > S_HDL_FC, Lactate M/T2D/Dep/Mig > FaW3/FA, ApoA1 Metabolites report on Lifestyle changes ? GOTO (Growing Old Together) 13-weeks intervention (164 subjects) v.d. Rest et al., 2016 • 12.5% reduced dietary intake • 12.5% increased physical activity Baseline Before baseline: • FFQ • IPAQ • Accelerometer • 24 hr blood glucose End During intervention • 4 x 24h recalls • Diary • Hunger and satiety questionnaires One week before end: • Accelerometer • 24 hr blood glucose Metabolomic Change after 13 weeks of lifestyle intervention * Independent of weight change Wurtz 2015 Circulation; Stancacova 2012 Diabetes; Mahendran 2013 Diabetes Care What does the Metabolome reflect: Android trunk fat in DEXA scans How do we collaborate MRI Metabolome Genome Medication use Metabolome Metabolome Central communication Gut Microbiome Metabolome Genome Body Composition Genome With Cohorts Joint effforts Vouchers for Communication With Public Meetings and Trainings Lifestyle/ Behaviour Metabolome Genome Future Longitudinal data Exposome (observational, experimental) Personal monitoring devices Metabolic Phenome Centre Netherlands Metabolic Phenome Centre Subject Database General Population Clinical Studies Eline Slagboom Leiden University Medical Centre Metabolites in Causal pathway Technology Cores Biomarkers for Treatment Miniaturized sample handling & preparation High throughput metabolomics Genomics, metabolomics & patient data integration Systems Pathology & Systems Pharmacology New Treatment Options Pathways to treat Focus: • Alzheimer and related disorders • Vascular pathology • Aging and longevity • To be extended – do join the team! Phenotypic screening of in-vitro models Cornelia van Duijn Erasmus MC