Plant-associated bacteria: An important key to a successful application of TCE phytoremediation Nele Weyens and Jaco Vangronsveld Phytoremediation of organic contaminants Plantgeassocieer de bacteriën in bodemsane ring, van labo tot Plantgeassocieer de bacteriën in bodemsane ring, van labo tot veldschaal veldschaal Evapotranspiration? Degradation Plantgeassocieer de bacteriën in bodemsane ring, van labo tot Xylem vessels Rhizosphere veldschaal Can the tree reach the contaminants? Can the contaminants reach the tree? Phytoremediation of organic contaminants Plantgeassocieer de bacteriën in bodemsane ring, van labo tot Plantgeassocieer de bacteriën in bodemsane ring, van labo tot Evapotranspiration? Phytotoxicity? veldschaal Degradation Plantgeassocieer de bacteriën in bodemsane ring, van labo tot veldschaal Xylem vessels Rhizosphere veldschaal Can the tree reach the contaminants? Can the contaminants reach the tree? A tree is much more than you can see! Plantgeassocie erde bacteriën in bodemsa nering, van labo tot Plantgeassocie erde bacteriën in bodemsa nering, van labo tot veldschaal veldschaal Marlene Cameron and Sheng-Yang He Michigan State University Plantgeassocie erde bacteriën in bodemsa nering, van labo tot veldschaal Hardoim et al., 2008 Bacteria: you can find them everywhere! First impression… ? Bacteria: you can find them everywhere! Bacterial cells are much smaller than human cells. There are at least 10 times as many bacteria as human cells in our body!! In average, half a kilo of our body weight are bacteria!!! Bacteria: the fingerprint of the future? Bacteria: humans probiotics! Bacteria: plants probiotics! Root mass (g) Leaf mass (g) Bacteria can promote plant growth 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 5.00 Controle W619 W619 + gfp Controle W619 W619 + gfp 4.00 3.00 2.00 1.00 0.00 Bacteria: plants probiotics! Direct growth promotion: - Increase the availability of: N (e.g. Rhizobium) P Fe Biofertilizers N2 - Production of plant growth hormones Auxins, gibberilins, cytokinins - Production of stress reducing enzyms e.g. ACC-deaminase Indirect growth promotion: compitition between plant growth promoting bacteria and pathogens NH4+ Bacteria: important players during phytoremediation of organic contaminants How can bacteria assist their hostplant? Evapotranspiration? • Growth promotion • Production of surfactants, organic acids, siderophores Phytotoxicity? Xylem vessels • Degradation of the contaminant Degradation Rhizosphere Can the tree reach the contaminants? Can the contaminants reach the tree? - Rhizosphere: high diversity vs short contact time -Xylem vessels: lower diversity vs long contact time Rhizosphere Rhizosphere + Endosphere CO2 2 CO CO CO CO CO 2222 TCE TCE TCE TCE TCE TCE TCE TCE CO2 CO2 TCE TCE TCE TCE TCE TCE TCE TCE TCE TCE TCE TCE TCE TCE TCE TCE TCE TCE CO2 CO2 TCE TCE TCE TCE TCE TCE TCE TCE TCE TCE TCE What is the ideal bacterial strain? Degradation genes on mobile DNA: plasmids Endophyte Degrader Long contact time between contaminant and degrader Easier to introduce PGPB How to create and introduce the ideal bacterial strain? What do we have? Soil bacteria with degradation plasmid Introduction by means of inoculation PGP endophytes The ideal strain can be created by natural conjugation What is the ideal bacterial strain? For phytoremediation of TCE using poplar TCE degrading soil bacterial strain: Burkholderia cepacia BU61 Plant growth promoting poplar endophyte: Pseudomonas putida W619 Natural gene transfer The TCE degrading, plant growth promoting poplar endophyte Pseudomonas putida W619-TCE TCE genes Endophyte-enhanced TCE phytoremediation: From the lab to the field Endophyte-enhanced TCE phytoremediation: From the lab to the field How to measure TCE evapotranspiration? Endophyte-enhanced TCE phytoremediation: From the lab to the field LAB experiments TCE phytotoxicity Control 25 ** ** 20 * Shoot mass (g) Shoot mass (g) W619 15 10 5 0 200 400 30 *** ** 0 200 400 0 200 400 25 *** Root mass (g) Root mass (g) 0 9 8 7 6 5 4 3 2 1 0 90 80 70 60 50 40 30 20 10 0 20 15 10 5 0 0 200 TCE exposure (mg l-1) 400 TCE exposure (mg l-1) Endophyte-enhanced TCE phytoremediation: From the lab to the field LAB experiments TCE evapotranspiration control ng TCE cm-2 h-1 4 W619 3 3 2 *** 2 1 1 0 200 400 TCE exposure (mg l-1) Endophyte-enhanced TCE phytoremediation: From the lab to the field application in the field Site background Planted poplar trees Mixed wood of english oak and common ash All cultivable oak- and ash-associated bacteria were isolated, identified and tested for TCE tolerance and degradation TCE μg/l TCE-contamination Endophyte-enhanced TCE phytoremediation: From the lab to the field application in the field TCE tolerance and degradation 3% 82% Is this TCE degradation enough to prevent TCE evapotranspiration? Ash: 10.84*10-3 ± 1.17*10-3 ngTCE/cm²h Oak: 6.35*10-3 ± 0.18*10-3 ngTCE/cm²h Endophyte-enhanced TCE phytoremediation: From the lab to the field application in the field Poplar trees were planted on the TCE contamination plume Planted poplar trees Mixed wood of english oak and common ash TCE μg/l TCE-contamination The trees were provided with a drainage tube for inoculation Which bacterial strain was inoculated? The TCE degrading, plant growth promoting poplar endophyte Pseudomonas putida W619 TCE genes Endophyte-enhanced TCE phytoremediation: From the lab to the field application in the field The in situ TCE evapotranspiration was measured 10 10 Before inoculation 9 9 8 10-2 ng cm-2 h-1 8 10-2 ng cm-2 h-1 3 months after inoculation 7 6 5 4 3 2 7 6 5 4 3 2 1 1 0 0 Control W619 Control W619 Endophyte-enhanced TCE phytoremediation: From the lab to the field application in the field Were the inoculated strain and its degradation genes introduced successfully? 3 months after inoculation Stem: The inoculated P. putida W619 with the TCE genes could not be re-isolated In situ inoculation But The inoculated TCE genes Could be found in other, natural abundant stem endophytes P. putida W619 Horizontal gene transfer TCE genes Roots: The inoculated P. putida W619 with the TCE genes could be re-isolated in very high numbers Conclusions Evapotranspiration? 1) Degradation capacity is present in the natural abundant population Phytotoxicity? Degradation Degradation genes Can the tree reach the contaminants? Can the contaminants reach the tree? Conclusions Evapotranspiration? 2) Degradation capacity is NOT (or not enough) present in the natural abundant population INOCULATION Phytotoxicity? Degradation Degradation genes Can the tree reach the contaminants? Can the contaminants reach the tree? Conclusions Evapotranspiration? 2) Degradation capacity is NOT (or not enough) present in the natural abundant population INOCULATION Phytotoxicity? Degradation Degradation genes Can the tree reach the contaminants? Can the contaminants reach the tree? Enrichment of the inoculated strain Conclusions Evapotranspiration? 2) Degradation capacity is NOT (or not enough) present in the natural abundant population INOCULATION Phytotoxicity? Degradation Degradation genes Can the tree reach the contaminants? Can the contaminants reach the tree? Transfer of the degradation genes Thank you for your attention! Contact Plantgeassocieer de bacteriën in information: bodemsane ring, van labo tot Dr. Ir. Nele Weyens veldschaal Universiteit Hasselt Centrum voor Milieukunde [email protected] +32 11 26 83 16 Prof. Dr. Jaco Vangronsveld Plantgeassocieer Universiteit Hasselt de Centrum voor Milieukunde bacteriën in [email protected] bodemsane +32 11 26 83 31 ring, van labo tot veldschaal Plantgeassocieer de bacteriën in bodemsane ring, van labo tot veldschaal