Document

advertisement
ENERGY
PV potentieel in Nederland &
Zonne-energie voorspelling
Bas Vet
7-10-2014
1
DNV GL © 2014
7-10-2014
SAFER, SMARTER, GREENER
Inhoud
1. Introductie
2. PV potentieel
3. PV netwerk integratie
 DNV GL National Smart Grid Model
 Bottom-up aanpak
4. Conclusies
2
DNV GL © 2014
7-10-2014
Oude potentieelstudies
 Potentieelstudies :
– De Noord (2003): 80 – 100 GWp
– Bersma et al (1997): 90 – 110 GWp
– Koot & Middelkoop (2000): 47 GWp
– Alsema & Van Bummelen (1992): 224 GWp
 Meest recente studie: 2003
 Hoeveel netwerkcapaciteit?
250
Potentieel (GWp)
– KPMG (1999): 27 GWp
0
1990
6
DNV GL © 2014
7-10-2014
2005
Inhoud
1. Introductie
2. PV potentieel
3. PV netwerk integratie
 DNV GL National Smart Grid Model
 Bottom-up aanpak
 Lokale case study
4. Conclusies
7
DNV GL © 2014
7-10-2014
PV Roof Potential
 Combining exact building
locations with Object Height
Register
Building profiles
Dominant tilt
Orientation
Corrected irradiation
 Calculated tilt and orientation
 Corrected average irradiation
8
DNV GL © 2014
7-10-2014
PV Roof Potential
PV technical details
No irradiation correction
Corrected irradiation
Peak power per m2
160 Wp/m2
160 Wp/m2
Average peak power
production per year
950 kWh/kWp
770 kWh/kWp
Average production per m2
152 kWh/m2
123 kWh/m2
Roof potential results:
 400 km2 potential PV surface
Residential
Commercial
Total
41 GWp
25 GWp
66 GWp
32 TWh
19 TWh
51 TWh
Not included:
 PV efficiency increase
 Shading by trees and buildings
 Infrastructure, ground mounted systems, water, etc.
10
DNV GL © 2014
7-10-2014
Inhoud
1. Introductie
2. PV potentieel
3. PV netwerk integratie
 DNV GL National Smart Grid Model
 Bottom-up aanpak
4. Conclusies
12
DNV GL © 2014
7-10-2014
Inhoud
1. Introductie
2. PV potentieel
3. PV netwerk integratie
 DNV GL National Smart Grid Model
 Bottom-up aanpak
4. Conclusies
25
DNV GL © 2014
7-10-2014
What can the network handle? A bottom-up approach
The ‘Meeks grid’ represents a typical Dutch residential community.
Our simulations calculate the impact of a scenario on variations of this
community
10 x B
25 x B
10 x C
25 x C
5xA
Commercial
5xB
12 x C
MV/LV
630
kVA
30 x A
District heating
40x G
5xA
10 x E
20 x E
5xE
Commercial
10 x E
60x H
F
F
F
A-D = town house, E-F = detached, G-H = flats, 2 commercials (school, shopping)
26
DNV GL © 2014
7-10-2014
Results from bottom-up approach
1. Peak production levelled with peak consumption: 11 GW
2. Coincidence factor of PV & over dimensioning of transformers: 16 GW
3. 30% curtailment (2-3% energy loss): 23 GW
4. Temporary transformer overload (few hours/year, 120%): 27 GW
5. Demand response (0,5 kW per household): +4 GW
6. ‘Conventional’ grid reinforcements: 50 GW
7. Electricity storage (5 kW per household): +40 GW
 Assume homogeneous distribution of PV
 Without seasonal energy storage the demand in winter must be provided by other
sources
 Grid voltage issues will arise (see case study)
28
DNV GL © 2014
7-10-2014
Inhoud
1. Introductie
2. PV potentieel
3. PV netwerk integratie
 DNV GL National Smart Grid Model
 Bottom-up aanpak
4. Conclusies
34
DNV GL © 2014
7-10-2014
Conclusions
 Abundance of roof area
 66 GWp with current technology
 >150 GWp full potential with all applications
 16 GW in present network without measures
 (Smart) Grid measures can allow up to 100 GW in the LV grid
Boundary conditions & Limitations
 Homogeneous distribution of PV
 (Local) voltage issues will appear earlier
 Spinning reserve must be provided
 Seasonal energy storage is necessary
35
DNV GL © 2014
7-10-2014
Thank you for your attention!
Bas Vet
[email protected]
+31 (0)26 356 2836
www.dnvgl.com
SAFER, SMARTER, GREENER
36
DNV GL © 2014
7-10-2014
Download