ENERGY PV potentieel in Nederland & Zonne-energie voorspelling Bas Vet 7-10-2014 1 DNV GL © 2014 7-10-2014 SAFER, SMARTER, GREENER Inhoud 1. Introductie 2. PV potentieel 3. PV netwerk integratie DNV GL National Smart Grid Model Bottom-up aanpak 4. Conclusies 2 DNV GL © 2014 7-10-2014 Oude potentieelstudies Potentieelstudies : – De Noord (2003): 80 – 100 GWp – Bersma et al (1997): 90 – 110 GWp – Koot & Middelkoop (2000): 47 GWp – Alsema & Van Bummelen (1992): 224 GWp Meest recente studie: 2003 Hoeveel netwerkcapaciteit? 250 Potentieel (GWp) – KPMG (1999): 27 GWp 0 1990 6 DNV GL © 2014 7-10-2014 2005 Inhoud 1. Introductie 2. PV potentieel 3. PV netwerk integratie DNV GL National Smart Grid Model Bottom-up aanpak Lokale case study 4. Conclusies 7 DNV GL © 2014 7-10-2014 PV Roof Potential Combining exact building locations with Object Height Register Building profiles Dominant tilt Orientation Corrected irradiation Calculated tilt and orientation Corrected average irradiation 8 DNV GL © 2014 7-10-2014 PV Roof Potential PV technical details No irradiation correction Corrected irradiation Peak power per m2 160 Wp/m2 160 Wp/m2 Average peak power production per year 950 kWh/kWp 770 kWh/kWp Average production per m2 152 kWh/m2 123 kWh/m2 Roof potential results: 400 km2 potential PV surface Residential Commercial Total 41 GWp 25 GWp 66 GWp 32 TWh 19 TWh 51 TWh Not included: PV efficiency increase Shading by trees and buildings Infrastructure, ground mounted systems, water, etc. 10 DNV GL © 2014 7-10-2014 Inhoud 1. Introductie 2. PV potentieel 3. PV netwerk integratie DNV GL National Smart Grid Model Bottom-up aanpak 4. Conclusies 12 DNV GL © 2014 7-10-2014 Inhoud 1. Introductie 2. PV potentieel 3. PV netwerk integratie DNV GL National Smart Grid Model Bottom-up aanpak 4. Conclusies 25 DNV GL © 2014 7-10-2014 What can the network handle? A bottom-up approach The ‘Meeks grid’ represents a typical Dutch residential community. Our simulations calculate the impact of a scenario on variations of this community 10 x B 25 x B 10 x C 25 x C 5xA Commercial 5xB 12 x C MV/LV 630 kVA 30 x A District heating 40x G 5xA 10 x E 20 x E 5xE Commercial 10 x E 60x H F F F A-D = town house, E-F = detached, G-H = flats, 2 commercials (school, shopping) 26 DNV GL © 2014 7-10-2014 Results from bottom-up approach 1. Peak production levelled with peak consumption: 11 GW 2. Coincidence factor of PV & over dimensioning of transformers: 16 GW 3. 30% curtailment (2-3% energy loss): 23 GW 4. Temporary transformer overload (few hours/year, 120%): 27 GW 5. Demand response (0,5 kW per household): +4 GW 6. ‘Conventional’ grid reinforcements: 50 GW 7. Electricity storage (5 kW per household): +40 GW Assume homogeneous distribution of PV Without seasonal energy storage the demand in winter must be provided by other sources Grid voltage issues will arise (see case study) 28 DNV GL © 2014 7-10-2014 Inhoud 1. Introductie 2. PV potentieel 3. PV netwerk integratie DNV GL National Smart Grid Model Bottom-up aanpak 4. Conclusies 34 DNV GL © 2014 7-10-2014 Conclusions Abundance of roof area 66 GWp with current technology >150 GWp full potential with all applications 16 GW in present network without measures (Smart) Grid measures can allow up to 100 GW in the LV grid Boundary conditions & Limitations Homogeneous distribution of PV (Local) voltage issues will appear earlier Spinning reserve must be provided Seasonal energy storage is necessary 35 DNV GL © 2014 7-10-2014 Thank you for your attention! Bas Vet [email protected] +31 (0)26 356 2836 www.dnvgl.com SAFER, SMARTER, GREENER 36 DNV GL © 2014 7-10-2014