HANNIE KREMER KNO & ANTROPOGENETICA ANTROPOGENETICA – HUMAN GENETICS Things we do 1. Map diseases to chromosomes (position) - monogenic and complex disorders 2. Interpret DNA variation – monogenic and complex disorders 3. Understand the function of genes pathogenesis 99,8% identical 4. Therapy 98% Identical Things we do 1. Map diseases to chromosomes (position) - monogenic disorders 2. Interpret DNA variation – monogenic and complex disorders 3. Understand the function of genes pathogenesis 4. Therapy MAP DISEASES TO CHROMOSOMES MONOGENIC DISORDERS A * A * B Linkage: If a gene and a marker are on the same chromosome they will segregate together n B n UNLESS They are separated by recombination A B A B * n * n A B B A * n * n Robinow syndrome Short stature Wide-spaced eyes Short nose Small penis Linkage interval Robinow syndroom cM 2.8 D9S1842 Chromosoom 9q21-q22.3 D9S1781 ROR2 2.1 D9S197 0.6 0.1 D9S1816 D9S280 max = 6.47 =0 D9S1842 1.4 D9S1851 0 D9S287 1.6 D9S176 Human Genetics Nijmegen Robinow syndrome Ror2 null mouse From DeChiara et al. Nature Genetics March 2000 Human Genetics Nijmegen MAP DISEASES TO CHROMOSOMES COMPLEX DISORDERS Genotyping Single Nucleotide Polymorphisms (SNPs) > 1 SNP per >3 kb Person A: Person B: Allel 1 …cctcctagggttgcaaagcctccttggctatg… …cctcctagggttgcatagcctccttggctatg… Allel 2 …cctcctagggttgcatagcctccttggctatg… …cctcctagggttgcatagcctccttggctatg… ~ 1,000,000 SNPs 500,000 SNPs Whole genome association studies Diabetes type 1 Obesity ADHD arrays Case control design 2000 cases 4000 controls SNPs indicate genes involved Gene 1 Gene 2 Gene 3 Gene 4 …… Gene 30.000 500,000 SNPs Whole genome association study Obesitas arrays Case control design 9000 cases 30000 controls BMI > 30 FTO gene Frayling et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316: 889-894, 2007. 500.000 SNPs Whole genome association study Obesitas arrays 9000 cases 30000 controls BMI > 30 FTO gene FTO gene 35% +0 kg 50% 15% +1.5 kg +3.0 kg INTERPRET GENETIC VARIATION • Sequence variation at a specific nucleotide • Copy number variations (CNV) p63 gene mutations in EEC syndrome TA-p63 TA DNA binding L162P Y163C Y192C (3) V202M C269Y S272N L248C R279C (3) R279H (12) R204W (10) R279Q R204Q (7) R204L R227Q (8) 29 Mutations in 90 families 28 missense 1 frameshift Iso A315E R313G D312H D312N P309S C308S C308Y C306R R304W (8) R304Q (14) R304P R280C (6) R280H (2) R280S SAM Ins A Structure model of p63 DNA binding domain 276 copy number abnormalities in 100 patients with Mental Retardation 25 2525 23 23 23 21 21 21 20 20 20 20 2020 Percentage of of patients patients Percentage Percentage of patients 23 23 23 How do we differentiate normal variation from causal changes? 15 1515 10 1010 5 55 5 5 3 3 3 33 1 1 00 0 1 11 0 00 0 0 0 11 1 22 2 333 4 44 5 55 6 6 7 77 DNA copy number per patient DNA copy numberalterations alterationsidentified per patient DNA copy number alterations identified per patient 8 88 9 99 Genomic profile obtained 250K SNP array Patient 1 de novo inherited variation Paient 1 Chromosome 1 Mother Chromosome 1 Chromosome 15 Chromosome 1 Chromosome 15 Father Chromosome 15 Alex Hoischen Christian Gillisen Next Generation sequencing 1953 The complete genome of an individual by massively parallel DNA sequencing. Wheeler et al. Nature, April 2008 Here we report the DNA sequence of a diploid genome of a single individual, James Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing D. Nature genetics Question of the year 2007 The sequencing of the equivalent of an entire human genome for $1,000 has been announced as a goal for the genetics community What would you do if this sequencing capacity were available immediately? Can we look at the all EXons of the genOME? EXOME sequencing! 1.) Sequence Capture 2.) Sequencing mapped reads formed contigs targeted exon(s) 3.) Mapping 4.) Mutation detection ABI SOLID 600 million map-able 50bp reads 30Gb Roche 454 1 million map-able 500bp reads 500Mb * Per individual genome ~3,000,000 SNP variants* ~1,000,000 CNVs* To understand human health and disease we have to understand all types of genomic variation: ~4,000,000 variants ~10,000 non-synonymous coding variants* Focus on de novo disease • 4 DNAs from patients with Schinzel-Giedion syndrome • patient samples n=14 • 4 human exomes: 2.5Gb output per sample Alex Hoischen Bregje van Bon Christian Gillisen De novo mutations of SETBP1 cause Schinzel-Giedion syndrome in 13 patients Alexander Hoischen*, Bregje WM van Bon*, Christian Gilissen*, Peer Arts, Bart van Lier, Marloes Steehouwer, Petra de Vries, Rick de Reuver, Geert Mortier, Koen Devriendt, Marta Z Amorim, Nicole Revencu, Alexa Kidd, Mafalda Barbosa, Anne Turner, Janine Smith, Christina Oley, Alex Henderson, Ian M Hayes, Elizabeth M Thompson, Han G Brunner, Bert BA de Vries, Joris A Veltman Nature Genetics Things we do 1. Map diseases to chromosomes (position) - monogenic disorders 2. Interpret DNA variation – monogenic and complex disorders 3. Understand the function of genes pathogenesis 4. Therapy Photoreceptor cilium protein complex Retinitis Pigmentosa RPGR Photoreceptor cilium protein complex Arl3 RP2 β-tubulin inversin NPHP2 lebercilin * PDE-δ nephrocystin-3 IQCB1 NPHP5 CC2D2A NPHP3 nephrocystin-1 NPHP1 nephrocystin-4 Dynein RPGR NPHP4 RPGRIP1L CEP290 RPGRIP1 Photoreceptor cilium protein complex Arl3 LCA lebercilin Joubert CC2D2A β-tubulin inversin Nephron * PDE-δ - ophthisis IQCB1 RP Dynein RP2 NPHP5 Senior Loken NPHP2 Joubert nephrocystin-3 NPHP3 nephrocystin-1 NPHP1 nephrocystin-4 RPGR NPHP4 RPGRIP1L CEP290 LCA / Joubert / Meckel RPGRIP1 LCA Joubert / Meckel GENETICA VAN GEHOORVERLIES ROL VAN BIOINFORMATICA AANGEBOREN GEHOORVERLIES ~ 1 in 900 children has congenital hearing impairment >20 dB in one or more frequencies 50% environmental 50 % inherited 70% Nonsyndromic ~%22 AD ~%77 AR 21 66 16 Known Genes ~%1 X-linked 30% Syndromic <%1 Mitochondrial •Ototoxic drugs •Acustic trauma •Infections •Usher •Alport •Pendred •Norrie •Waardenburg •Branchio-Oto-Renal •Jervell and Lange-Nielsen WAAROM IS HET OPHELDEREN VAN OORZAKEN VAN ERFELIJKE ZIEKTEN BELANGRIJK? Vraag van patiënt naar de oorzaak beantwoorden: is het erfelijk - erfelijkheidsadvies Vroege diagnostiek van familieleden – goede begeleiding Inzicht in genen/eiwitten die essentieel zijn voor ontwikkeling en functie van het binnenoor Handvaten voor therapie FAMILIE TR57 DFNB63 LOCUS 15.5 15.4 DFNA32 TR57 D11S987 D11S1337 MYO7A FGF3 D11S1314 D11S2371 D11S1291 DFNB24 TECTA DFNB20 D11S4179 DFNB63 D11S4139 D11S916 23.3 24.1 24.2 24.3 25 DFNB63 DFNB63 D11S4136 DFNB63 D11S4113 11.2 11.12 11.11 11 12.1 12.2 12.3 13.1 13.2 13.3 13.4 13.5 14.1 14.2 14.3 21 22.1 22.2 22.3 23.1 23.2 26 bekende of voorspelde genen DFNB51 DFNB63 12 FT2 PKDF702 USH1C 14.3 14.2 14.1 13 FT1A-G ~5.29 Mb 15.3 15.2 15.1 1.03 Mb LRTOMT KARAKTERISATIE Genome browser build 36.1 LRTOMT1 LRTOMT2 EFFECT VAN MUTATIES 3’ UTR A215A G163VfsX4 (c.358+4G>A) R81Q W105R A29SfsX54 (c.358+4G>A) 3’ UTR E110K Catechol-O-methyltransferase domein MOLECULAR MODELING EFFECT VAN MISSENSE MUTATIES HET BINNENOOR SAMENVATTING Bioinformatica is essentieel voor verschillende stappen in studies naar ziektegenen De structuur en functie van het humane genoom en genen zijn nog lang niet in kaart gebracht De oorzaak van DFNB63 is gelegen in defecten in het LRTOMT gen. Het precieze effect van mutaties in dit gen op de functie van het binnenoor is nog niet duidelijk.