Incorporation of Contracture Formation during Dermal Wound

advertisement
Incorporation of Contracture
Formation during Dermal Wound
Healing: a Mathematical Model
W.M. Boon
Dr. ir. J. F. Vermolen
Prof. dr. ir. C. Vuik
Dr. ir. J. H. Dubbeldam
D. Koppenol, MSc
Challenge the future
1
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Opzet
• Onderzoeksdoel
• Biologisch proces
• Wiskundig model
• Componenten
• Contractie
• Resultaten
• Conclusies & aanbevelingen
Challenge the future
2
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Onderzoeksdoel
• Wondgenezing
• Vorming van nieuw weefsel
• Sterkte afhankelijk van de mate van isotropie
• Samentrekking van het weefsel (contractie)
• Contractuur vorming
• Modelleren van het volledige proces
Challenge the future
3
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Gebied
• Doorsnede huid
• Wondgebied
• 3 weken
Challenge the future
4
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Biologisch proces
Challenge the future
5
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Biologisch Proces
tPA
PDGF
Fibrine
Leukocyten
• Fibrine klont gevormd
• Afbraak door tPA
• PDGF verspreidt via diffusie
• Leukocyten arriveren
• TGF-β wordt uitgescheden
TGF-β
• Chemoattractant
• Fibroblasten arriveren
• Myofibroblasten
• Celdeling
Fibroblasten en
Myofibroblasten
• Collageen productie
• Contractie
Collageen
Contractie
Challenge the future
6
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Wiskundig model
Challenge the future
7
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Componenten: Cellen
• Discrete schijven
• Receptoren
• Leukocyten
• Bloedsomloop
• Fibroblasten en myofibroblasten
• Omliggend gebied
• Celdeling
• Beweging
• Celdood
Challenge the future
8
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Componenten: Cytokines
• Diffusievergelijkingen
• tPA: Afbraak fibrine
• PDGF: Aantrekking leukocyten
• TGF-β: Aantrekking (myo)fibroblasten
• Grid
Challenge the future
9
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Componenten: Vezels
• Fibrine
• Collageen
• Dichtheid en oriëntatie
• Tensor
Challenge the future
10
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Contractie
• Samentrekking van het weefsel
• Tijdelijke krachten
• Fibroblasten en myofibroblasten
• Permanente krachten
• Myofibroblasten
• Vorming van contractuur
• Invloed op alle componenten
• Discreet
• Continu
Challenge the future
11
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Tijdelijke krachten
• Puntkracht
• Kromme rond cel
• Opsplitsen in lijnstukken
• Meerdere puntkrachten
• Formulering
Challenge the future
12
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Permanente krachten
• Contractuur vorming
• Elementsgewijs
• Timer per element
Challenge the future
13
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Resultaten
Challenge the future
14
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Celpopulaties
Aantal cellen
150
Leukocyten
Fibroblasten
100
50
0
0
100
200
300
Tijd (uren)
400
Challenge the future
500
15
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Resultaten cellen
Challenge the future
16
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Resultaten cytokines
Gemiddelde concentratie
0.4
PDGF
TGF-
0.3
0.2
0.1
0
0
100
200
300
Tijd (uren)
400
Challenge the future
500
17
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Resultaten cytokines
Challenge the future
18
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Resultaten vezels
Gemiddelde dichtheid
1
0.8
0.6
Collageen
Fibrine
0.4
0.2
0
0
100
200
300
Tijd (uren)
400
Challenge the future
500
19
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Resultaten vezels
Challenge the future
20
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Resultaten: Vezels
Collageen anisotropie
0.4
0.3
0.2
95e percentiel
Gemiddelde
0.1
5e percentiel
0
0
100
200
300
Time (hours)
400
Challenge the future
500
21
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Contractie
Relatieve oppervlakte
1.05
95e percentiel
Gemiddelde
1
5e percentiel
0.95
0.9
0.85
0
100
200
300
Tijd (uren)
400
Challenge the future
500
22
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Toename in tijdelijke krachten
Relatieve oppervlakte
1.05
1
0.95
0.9
0.85
0
100
200
300
Tijd (uren)
400
Challenge the future
500
23
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Conclusies en aanbevelingen
Challenge the future
24
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Conclusies
• Hybride model: Discrete cellen en continue concentraties
• Verschillende stappen van wondgenezing
• Toevoeging van contractie
• Bewegend grid
• Invloed op alle componenten
• Vorming contractuur
Challenge the future
25
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Aanbevelingen
• Groter oppervlak
• Tensor representatie verder benutten
• Differentiatie tot myofibroblast
• Model als basis
Challenge the future
26
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Vragen
Challenge the future
27
Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model
Download