Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model W.M. Boon Dr. ir. J. F. Vermolen Prof. dr. ir. C. Vuik Dr. ir. J. H. Dubbeldam D. Koppenol, MSc Challenge the future 1 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Opzet • Onderzoeksdoel • Biologisch proces • Wiskundig model • Componenten • Contractie • Resultaten • Conclusies & aanbevelingen Challenge the future 2 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Onderzoeksdoel • Wondgenezing • Vorming van nieuw weefsel • Sterkte afhankelijk van de mate van isotropie • Samentrekking van het weefsel (contractie) • Contractuur vorming • Modelleren van het volledige proces Challenge the future 3 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Gebied • Doorsnede huid • Wondgebied • 3 weken Challenge the future 4 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Biologisch proces Challenge the future 5 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Biologisch Proces tPA PDGF Fibrine Leukocyten • Fibrine klont gevormd • Afbraak door tPA • PDGF verspreidt via diffusie • Leukocyten arriveren • TGF-β wordt uitgescheden TGF-β • Chemoattractant • Fibroblasten arriveren • Myofibroblasten • Celdeling Fibroblasten en Myofibroblasten • Collageen productie • Contractie Collageen Contractie Challenge the future 6 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Wiskundig model Challenge the future 7 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Componenten: Cellen • Discrete schijven • Receptoren • Leukocyten • Bloedsomloop • Fibroblasten en myofibroblasten • Omliggend gebied • Celdeling • Beweging • Celdood Challenge the future 8 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Componenten: Cytokines • Diffusievergelijkingen • tPA: Afbraak fibrine • PDGF: Aantrekking leukocyten • TGF-β: Aantrekking (myo)fibroblasten • Grid Challenge the future 9 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Componenten: Vezels • Fibrine • Collageen • Dichtheid en oriëntatie • Tensor Challenge the future 10 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Contractie • Samentrekking van het weefsel • Tijdelijke krachten • Fibroblasten en myofibroblasten • Permanente krachten • Myofibroblasten • Vorming van contractuur • Invloed op alle componenten • Discreet • Continu Challenge the future 11 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Tijdelijke krachten • Puntkracht • Kromme rond cel • Opsplitsen in lijnstukken • Meerdere puntkrachten • Formulering Challenge the future 12 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Permanente krachten • Contractuur vorming • Elementsgewijs • Timer per element Challenge the future 13 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Resultaten Challenge the future 14 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Celpopulaties Aantal cellen 150 Leukocyten Fibroblasten 100 50 0 0 100 200 300 Tijd (uren) 400 Challenge the future 500 15 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Resultaten cellen Challenge the future 16 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Resultaten cytokines Gemiddelde concentratie 0.4 PDGF TGF- 0.3 0.2 0.1 0 0 100 200 300 Tijd (uren) 400 Challenge the future 500 17 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Resultaten cytokines Challenge the future 18 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Resultaten vezels Gemiddelde dichtheid 1 0.8 0.6 Collageen Fibrine 0.4 0.2 0 0 100 200 300 Tijd (uren) 400 Challenge the future 500 19 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Resultaten vezels Challenge the future 20 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Resultaten: Vezels Collageen anisotropie 0.4 0.3 0.2 95e percentiel Gemiddelde 0.1 5e percentiel 0 0 100 200 300 Time (hours) 400 Challenge the future 500 21 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Contractie Relatieve oppervlakte 1.05 95e percentiel Gemiddelde 1 5e percentiel 0.95 0.9 0.85 0 100 200 300 Tijd (uren) 400 Challenge the future 500 22 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Toename in tijdelijke krachten Relatieve oppervlakte 1.05 1 0.95 0.9 0.85 0 100 200 300 Tijd (uren) 400 Challenge the future 500 23 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Conclusies en aanbevelingen Challenge the future 24 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Conclusies • Hybride model: Discrete cellen en continue concentraties • Verschillende stappen van wondgenezing • Toevoeging van contractie • Bewegend grid • Invloed op alle componenten • Vorming contractuur Challenge the future 25 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Aanbevelingen • Groter oppervlak • Tensor representatie verder benutten • Differentiatie tot myofibroblast • Model als basis Challenge the future 26 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model Vragen Challenge the future 27 Incorporation of Contracture Formation during Dermal Wound Healing: a Mathematical Model