Lessenreeks co’s 2012-2013 Fysiologie van de ademhaling gasuitwisseling Professor Dr. Steffen Rex Department of Anesthesiology University Hospitals of the KU Leuven [email protected] Fysiologie van de gasuitwisseling What you will learn today ! Oxygen cascade ! PiO2 ! PAO2 ! Diffusion ! !AaPO2: Shunt ! Oxygen transport / content / delivery ! Pulse oximetry ! Therapeutic principles to improve oxygenation ! CO2-transport ! Capnography Fysiologie van de gasuitwisseling 1 Critical dependency on oxygen Principal stores of body oxygen Breathing air (ml) Breathing 100% O2 (ml) In the lungs (FRC) 450 3000 In the blood 850 950 Dissolved in tissue fluids 50 ?100 Myoglobin ?200 ?200 Total 1550 4250 Oxygen consumption = 3-4 ml/kg/min = 300 ml/min Fysiologie van de gasuitwisseling Oxygen cascade Fysiologie van de gasuitwisseling 2 Oxygen cascade: Decrease of PO2 from air to mitochondria 159 mmHg 4-23 mmHg Fysiologie van de gasuitwisseling Pressure of inspired oxygen (PiO2) Dalton‘s law: Pi gas = Fi gas ! Ptotal PiO2 = 0.2094! 760 = 159mmHg (0°C, dry) PiO2 = 1.0 ! 760 = 760mmHg STPD = Standard Temperature Pressure Dry Fysiologie van de gasuitwisseling 3 Pressure of inspired oxygen (PiO2) How to increase FiO2 100 % ~ 40 % ~ 40-60 % ~ 60-80 % Fysiologie van de gasuitwisseling Pressure of inspired oxygen (PiO2) ! Concentration of atmospheric oxygen: 20.94% (159 mmHg) (dry gas!) ! Humidification of gas during passage through the respiratory tract ! Dilution of oxygen by added water vapour ( PiO2 = FiO2 (dry ) " PB ! PH 2O ) PiO2 = 0.2094" (760 ! 47) = 149mmHg(37°C) BTPS = Body Temperature Pressure Saturated Fysiologie van de gasuitwisseling 4 Pressure of inspired oxygen (PiO2) ! Constant concentration of atmospheric oxygen: 20.94% (159 mmHg) ! Decrease of barometric pressure with altitude ( PiO2 = FiO2 (dry ) " PB ! PH 2O ) Fysiologie van de gasuitwisseling Pressure of inspired oxygen (PiO2) Fysiologie van de gasuitwisseling 5 Pressure of inspired oxygen (PiO2) Oxygen cascade at high altitude Grocott M. et al. Arterial Blood Gases and Oxygen Content in Climbers on Mount Everest. N Engl J Med 2009;360:140-9 Fysiologie van de gasuitwisseling Oxygen cascade 159 mmHg 4-23 mmHg Fysiologie van de gasuitwisseling 6 Pressure of alveolar oxygen (PAO2) Alveolar air equation PAO2 " PiO2 – PaCO2 PAO2 " PiO2 – PaCO2/RQ " 149 – 40/0.9 " 105 mmHg " 14 % (of 760mmHg) & PiO2 ' PeO2 # !! PAO2 = PiO2 ' PaCO2 $$ % PeCO2 " Hypoventilation: can cause hypoxia Hyperventilation: compensatory response to high altitude Fysiologie van de gasuitwisseling Diffusion Pulmonary capillary Fysiologie van de gasuitwisseling 7 Diffusion Barriers Gas space within the alveolus: uniform distribution of O2, N2, CO2 !No barrier Alveolar lining fluid: thin Tissue barrier: Alveolar epithelium: 0.2#m Interstitial space: 0.1#m Endothelium: 0.2#m Plasma layer Diffusion into and within the red blood cells Uptake of oxygen by hemoglobin (time-dependent reaction) Fysiologie van de gasuitwisseling Diffusion Fick‘s law PcapO2 PAO2 Destruction of alveoli in emphysema Hypoxia Edema Fibrosis "n "c = $D # A # "t "! Wall thickness $ D = Diffusion coefficient Fysiologie van de gasuitwisseling 8 Diffusion Pulmonary edema Fysiologie van de gasuitwisseling Diffusion capacity: Calculation DLCO = 10.9 " height (m) ! 0.067 " age( years) ! 5.89 30 years, 1.78m ! 34.4 ml/min/mmHg DLCO = 7.1" height (m) ! 0.054 " age( years) ! 0.89 • Lung volume • Posture (Supine > standing/sitting) • Age • Sex (Men > Women) • White > Black Race Fysiologie van de gasuitwisseling 9 Alveolar/arterial PO2 difference PAO2 = 105 mmHg !AaPO2 = 15-35 mmHg PaO2 = 102 – 0.33 * age (mmHg) Fysiologie van de gasuitwisseling Alveolar/arterial PO2 difference Shunt Healthy Dead Space Fysiologie van de gasuitwisseling 10 Alveolar/arterial PO2 difference SHUNT Anatomical (extrapulmonary) Thebesian veins (0.3% of CO) Bronchial veins (1% of CO) Congenital heart disease Intrapulmonary (Va/Q < 1) Atelectasis Pneumonia ALI Pulmonary collapse Fysiologie van de gasuitwisseling Venous admixture Shunt: Calculation Q! T = Q! c + Q! s Q! T ! CaO2 = Q! c ! CcO2 + Q! s ! Cv O2 Q! s CcO2 ! CaO2 = Q! T CcO2 ! Cv O2 Fysiologie van de gasuitwisseling 11 Venous admixture The iso-shunt diagram With increasing shunt (% 30%), hypoxemia can no longer be treated with added inspired oxygen Fysiologie van de gasuitwisseling Venous admixture Summary Fysiologie van de gasuitwisseling 12 Oxygen cascade Fysiologie van de gasuitwisseling Oxygen transport within the blood: Physically dissolved Henry‘s law c=&*p c = concentration & = Bunsen solubility coefficient p = partial pressure & = 0.000031 ml O2 / ml blood / mmHg ! PO2 100 mmHg 0.3 ml O2 / 100 ml Fysiologie van de gasuitwisseling 13 Oxygen transport within the blood: Chemically bound: Hemoglobin Fysiologie van de gasuitwisseling Oxygen transport within the blood: Chemically bound: Hemoglobin Fysiologie van de gasuitwisseling 14 Oxygen transport within the blood: Oxyhemoglobin dissociation curve Sigmoidal shape: Binding of the 1st O2 molecule increases affinity of hemoglobin for the next O2 molecule Lung Venous point Advantages: 1) Decreases in PO2 are tolerated over a relatively wide range 2) Maximal saturation is achieved at „normal“ PO2 Tis sue Ca pill ary Arterial point 3) O2-release is facilitated at low PO2 Fysiologie van de gasuitwisseling Oxygen transport within the blood: Position of the HbO2 dissociation curve P50 = PO2 that achieves a SpO2 of 50% (27mmHg) Right shift: "PO2 = > 27 mmHg Less affinity of Hb for O2 Facilitated O2-release into periphery Left shift: #PO2 = < 27mmHg Higher affinity of Hb for O2 Impaired O2-release into periphery Fysiologie van de gasuitwisseling 15 Oxygen transport within the blood: Position of the HbO2 dissociation curve Right shift: # pH " pCO2 " Temp. " 2,3-DPG Left shift: " pH # pCO2 # Temp. # 2,3-DPG Fysiologie van de gasuitwisseling Oxygen transport within the blood: Bohr effect "pCO2 Affinity of Hb to O2 is inversely related to acidity and CO2concentration !pCO2 Lungs: High pH, low CO2 " High affinity " Facilitated O2-uptake Peripheral tissues: Hsia C. et al. RESPIRATORY FUNCTION OF HEMOGLOBIN. N Engl J Med 1998 Low pH, high CO2 " Low affinity " Facilitated O2-release Fysiologie van de gasuitwisseling 16 Oxygen transport within the blood: Red-Cell 2,3-Disphosphoglycerate (DPG) Glycolysis In normal cells: negative feedback inhibition of DPGsynthase by 2,3-DPG In red cells: 2,3-DPG is sequestered by Hbdeoxy ! no feedback inhibition In normal red cells: marginal significance Rapoport-Luebering-shunt Transfusion: Inhibition of glycolysis by hypothermia during storage ! # DPG-production ! Leftshift of Hb-O2-dissociation curve Hsia C. et al. RESPIRATORY FUNCTION OF HEMOGLOBIN. N Engl J Med 1998 Fysiologie van de gasuitwisseling Oxygen transport within the blood Dissociation curves Fetal Hb: Leftward shift ! Facilitated O2-uptake at low PO2 in placenta Adult Hb Myoglobin: Fetal Hb O2-release only at PO2 <15-30mmHg (at exercise) Carboxyhemoglobin: Extremely high affinity of Hb for CO Fysiologie van de gasuitwisseling 17 Oxygen transport within the blood Oxygen saturation SpO2 = HbO2 HbO2 + Hbdeoxy Dual wave oxymeter = 98 ! 100% SaO2 = HbO2 HbO2 + Hbdeoxy + MetHb + COHb + SulfHb = 96 ! 98% Multiwave oxymeter Fysiologie van de gasuitwisseling Oxygen transport within the blood Oxygen saturation: How to measure? Pulse oximetry Fysiologie van de gasuitwisseling 18 Oxygen transport within the blood Oxygen saturation: Pulse oximetry ! Plethysmography • Pulsatile flow: discrimination art/ven bloed en weefsel Oxygen/CO Fysiologie van de – Transport gasuitwisseling - Delivery 2 Uptake Oxygen transport within the blood Oxygen saturation: Pulse oximetry ! Spectrophotometry • Principle: light extinction is dependent upon concentration of light absorbing substance (Lambert-Beer’s law) • OxyHb primarily absorbs IR light (940 nm) • DesoxyHb primarily absorbs red light (660nm) Oxygen/CO Fysiologie van de – Transport gasuitwisseling - Delivery 2 Uptake 19 Oxygen transport within the blood Oxygen saturation: Pulse oximetry ! Spectrophotometry Calculation of absorption ratio 660/940 nm Oxygen/CO Fysiologie van de – Transport gasuitwisseling - Delivery 2 Uptake Oxygen transport within the blood Oxygen saturation: Pulse oximetry Limitations: ! Methemoglobin (metHb) • Absorbs R en IR light 1:1 => sat 85% • Falsely low values ! Carboxyhemoglobin (HbCO) • Imitates absorption characteristics of HbO2 • Falsely high values Oxygen/CO Fysiologie van de – Transport gasuitwisseling - Delivery 2 Uptake 20 Oxygen transport within the blood Oxygen saturation: Pulse oximetry Absorption characteristics falsely account for a low sat in the patient with Hgb-Met Hgb-CO & Hgb-O2 have similar absorbance at 666nm so Hgb-CO will be falsely interpreted as Hgb-O2 (high sat) Oxygen/CO Fysiologie van de – Transport gasuitwisseling - Delivery 2 Uptake Oxygen transport within the blood Oxygen saturation: Pulse oximetry ! Accuracy • <2% bias at SO2 > 90% • Saturation < 80% " bias # 5% ! Limitations: Oxygen/CO Fysiologie van de – Transport gasuitwisseling - Delivery 2 Uptake 21 Oxygen transport within the blood Oxygen-combining capacity of hemoglobin Hüfner‘s constant Chemically bound 1 mol Hb " 4 mol O2 1 mol O2 " 22.4 l 1 mol Hb " 89.6 l 1 mol Hb " 64500 g 1 g Hb " " " Physically dissolved 1.31 ml O2 1.34 1.39 Fysiologie van de gasuitwisseling Oxygen transport within the blood Oxygen content CaO2 = physically diss. O2 + chemically bound O2 CaO2 ml/dl CaO2 CvO2 = & * PO2 + (SaO2 * [Hb] * 1.31) ml/dl * mmHg + (%/100) * g/dl * ml/g = 0.003 * 100 = 0.3 " 20 ml/dl + (0.98 * 15 *1,31) + 19.26 = & * PO2 = 0.003 * 40 = 0.12 " 15 ml/dl + (SvO2 * [Hb] * 1.31) + (0.75 * 15 *1,31) + 14.74 avDO2 = 5 ml/dl O2ER = 25% Fysiologie van de gasuitwisseling 22 Oxygen transport within the blood Oxygen content Training at high altitude Fysiologie van de gasuitwisseling When oxygen is too low…. Hypoxia Hypoxygenation Hypoxemia Ischemia Hypoxemia = # PaO2 = # SpO2 = # CaO2 = # No blood flow Hypoxic CaO2 = & * PaO2 + (SaO2 * Hb * 1.31) Anemic Toxic: HbCO, Met-Hb Tolerance: Anemic (Right-shift) > Hypoxic > Toxic (Left-shift) Fysiologie van de gasuitwisseling 23 Oxygen transport within the blood Oxygen delivery DO2 = Cardiac output ml/min * Arterial oxygen content l/min =5 * (ml/dl * 10) + (20 * 10) DO2 " 1000 ml/min VO2 = Cardiac output =5 * avDO2 * (5 * 10) " 250 ml/min O2ER = VO2 / DO2 = 25% Fysiologie van de gasuitwisseling When oxygen delivery is too low…. Sc(v)O2: 27% 37% 47% 57% 67% 77% Increase in oxygen extraction Decrease in central (mixed) venous oxygen saturation Fysiologie van de gasuitwisseling 24 Oxygen cascade: The last step: Diffusion into cell Leach R. et al. ABC of oxygen. Oxygen transport—2. Tissue hypoxia BMJ 1998;317:1370-3 Fysiologie van de gasuitwisseling Summary of oxygen cascade Fysiologie van de gasuitwisseling 25 Summary of oxygen cascade Treacher D.F. et al. ABC of oxygen. Oxygen transport—1. Basic principles BMJ 1998;317:1302-6 1 kPa = 7,5 mmHg Fysiologie van de gasuitwisseling What can we do to improve DO2? Rampal T et al. Using oxygen delivery targets to optimize resuscitation in critically ill patients. Current Opinion in Critical Care 2010,16:244–249 Fysiologie van de gasuitwisseling 26 Carbon Dioxide • Volatile waste product of cellular metabolism • • • • CO2 production averages 200 ml/min in resting adult During exercise this amount may increase six-fold Tissue PtCO2 is 50 mmHg Diffuses into systemic capillaries with lower PCO2 levels Fysiologie van de gasuitwisseling Carbon Dioxide Transport (I) Dissolved in plasma (7%) • 20x more soluble in plasma than O2 • Solubility coefficient: 0,0007 ml/mmHg/ml • 2,5 ml CO2 in 100 ml arterial blood (II) Diffusion into erythrocyte (93%) a) Binding to hemoglobin (23%) ! carbaminohemoglobin buffered by reduced hemoglobine Fysiologie van de gasuitwisseling 27 Carbon Dioxide Transport (II) Diffusion into erythrocyte (93%) b) Reacting to carbonic acid (70%) buffered by reduced hemoglobine Diffusion into plasma Exchange for Cl- -ions HAMBURGER SHIFT Fysiologie van de gasuitwisseling Carbon Dioxide Transport 7% 23% 70% Fysiologie van de gasuitwisseling 28 Carbon dioxide transport within the blood: Haldane effect Hbdeoxy is a more powerful buffer than HbO2 Affinity of Hb to CO2 is inversely related to O2-concentration Lungs: High O2 " Low affinity for CO2 " Facilitated CO2-release Peripheral tissues: Hsia C. et al. RESPIRATORY FUNCTION OF HEMOGLOBIN. N Engl J Med 1998 Low O2 " High affinity for CO2 " Facilitated CO2-uptake Fysiologie van de gasuitwisseling CO2 Equilibrium Curve • Different from HbO2 curve PO2 = 40mmHg – Relationship is linear – Venous blood transports more CO2 than arterial blood • CO2 equilibrium is affected by O2 saturation of Hb PO2 = 100mmHg – Ability to bind CO2 increased in Hbdeoxy – deoxygenated Hb is weaker acid than oxygenated Hb • A-a Pco2 levels not as effected by V/Q mismatch – Diffusing capacity 20x greater with CO2 than O2 Fysiologie van de gasuitwisseling 29 Carbon Dioxide Delivery Fysiologie van de gasuitwisseling Monitoring CO2 Transport & Delivery Capnography • Infrared absorption spectroscopy • CO2 absorbs IR-light (wavelength 4,26 $m) • Measurement of absorption within exhaled air and in test gas (known CO2-concentration) • Amount of absorption related to CO2-concentration (Lambert-Beer‘s law) • Before measurement: calibration with test gas Fysiologie van de gasuitwisseling 30 Monitoring CO2 Transport & Delivery Capnography • Measurement locations Mainstream Sidestream Fysiologie van de gasuitwisseling Monitoring CO2 Transport & Delivery Capnography • Accuracy • ± 2 mmHg • Limitations • Correction for barometric pressure required • Obstruction of sample line by water/secretions • Interference with CO, N2O, H2O and volatile anesthetics (do also absorb IR light) • Consider sampling time (dependent upon length of sample line, flow and viscosity of gases) Fysiologie van de gasuitwisseling 31 Monitoring CO2 Transport & Delivery Capnogram Fysiologie van de gasuitwisseling Monitoring CO2 Transport & Delivery Capnogram Fysiologie van de gasuitwisseling 32 Monitoring CO2 Transport & Delivery Information hidden in capnography Capnography provides instantaneous information about ! Ventilation: how effectively is CO2 eliminated by the pulmonary system? ! Perfusion: how effectively is CO2 transported to the lungs? ! Metabolism: how effectively is CO2 produced by cellular metabolism? ! Equipment Fysiologie van de gasuitwisseling Monitoring CO2 Transport & Delivery Information hidden in capnography Fysiologie van de gasuitwisseling 33 What you learnt today ! Oxygen cascade ! PiO2 ! PAO2 ! Diffusion ! !AaPO2: Shunt ! Oxygen transport / content / delivery ! Pulse oximetry ! Therapeutic principles to improve oxygenation ! CO2-transport ! Capnography Fysiologie van de gasuitwisseling Suggested readings (and sources of figures) Fysiologie van de gasuitwisseling 34 Thank you for your attention Fysiologie van de gasuitwisseling Pressure of inspired oxygen (PiO2) Oxygen cascade at high altitude Beall C Two routes to functional adaptation: Tibetan and Andean high-altitude natives. PNAS May 15, 2007 vol. 104 suppl. 1 8655–8660 Fysiologie van de gasuitwisseling 35 Pressure of alveolar oxygen (PAO2) To maintain PAO2 " VO2 ! " Alv. Vent. Constant Alv. Vent. " VO2 ! # PAO2 VO2 Fysiologie van de gasuitwisseling Diffusion: Transit time Transit Time # Transit time # # Oxygen uptake # " Diffusion gradient # "Diffusion capacity Fysiologie van de gasuitwisseling 36 Venous admixture Effects on blood gases PO2 Minor changes in CaO2 " Marked effects on PaO2 " Hypoxemia responds poorly to added inspired O2 " When 100% O2 is inspired, the arterial PO2 does not rise to the expected level PCO2 Even major changes in CaCO2 ! Minimal effects on PaCO2 Fysiologie van de gasuitwisseling 37