SMT 2013 Gel-gebaseerde typeringsmethoden Genus Species Subspec. Strain DNA-DNA reassociation Speed Ease Platf. Typ. Flex. € >>24h 16S rDNA sequencing 24h RAPD 8h PFGE - n.a. n.a./I H + S D/I H +++ A C/T H 48h ++ A D/IT H Diversilab (rep-PCR) 24h +++ A D/T SS AFLP 24h +++ A/S DC/IT H MLST 48h ++ S D/IT SS MLVA 24h +++ A/S D/T SS Raman Spectrometry 48h +++ n.a. D/IT SS Optical mapping 48h + n.a. D/IT H SNP analyse 24h + S DT SS Pulse Field Gel Electrophoresis (PFGE) Proteinase K Restriction enzymes Agarose embedded bacteria with enzymes PFGE profile Fragment separation Embedded digested bacteria placed in agarose gel wells Electric Pulse Field separation cursus Breda 2008 3 RAPD Random amplified polymorphic DNA CARRIED OUT WITH ONLY ONE PRIMER Amplification at low annealings temperature with one primer RAPD profile Agarose gel separation ‘Quick & dirty’ cursus Breda 2008 4 rep-PCR Geconserveerde repetitieve elementen BOX, ERIC, REP verspreid aanwezig bij de meeste bacteriën Stringente vermenigvuldiging van specifieke chromosomale regios rep-PCR profile (agarose) Gelelectrophorese Geautomatiseerd systeem: Diversilab cursus Breda 2008 5 Amplified Fragment Length Polymorphism (AFLP) CHROMOSOMAAL DNA SIMULTANE knip en plak (restrictie & ligatie) AATTC G G CTTAA AATTC G T AAT CTCGTAGACTGCGTACCAATTC CATCTGACGCATGGTTAAG T AAT TAA T TTACTCAGGACTCAT AATGAGTCCTGAGTAGCAG STRINGENTE AMPLIFICATIE TTACTCAGGACTCAT AATGAGTCCTGAGTAG CTCGTAGACTGCGTACCAATTC GACTGCGTACCAATTC CATCTGACGCATGGTTAAG AATGAGTCCTGAGTAGCAG PAGE cursus Breda 2008 6 Amplified Fragment Length Polymorphism (AFLP) Combination of RFLP & rep-PCR: restriction analysis combined with specific amplification Presently there are several variations on the method Two main variations: High frequent-medium frequent DNA digestion on PAGE Medium frequent DNA digestion on agarose Selection of fragments analyzed on PAGE All fragments analyzed on Agarose Vos, et.al. NAR 1995 40 50 60 70 80 90 100 500bp 400bp 300bp 200bp 100bp 50bp S. capitis S. capitis S. capitis S. capitis S. capitis S. capitis S. capitis S. capitis S. cap(ref S. cap(ref S. aureus S.aureus S. aureus S. warneri S. warneri S. epiderm S. epidermidis S. epiderm S. epiderm S. haemolyticus Window of identific. S. haemo typing Agarose AFLP Chromosomal DNA Digestion & ligation One or more enzymes can be used Each enzyme with specific adaptor Fragments can be isolated from gel No expensive platform needed All fragments are amplified Specific PCR amplification Fragment separation Analyzing Band based typing methods Some pitfalls: - Number of bands too high! -Important that quality of gels are high leading to reproducible results - Band analysis requires specific pretreatments: - Definition of lanes - Calculation of curves - Normalization of tracks - Search for bands In addition: Background removal Noise filtering Band tolerance Guest Lecture: prof. dr. Bruno Pot Interpretation of gels: Differences in band intensities esp. random amplification techniques) Overlapping bands Better discrimination with polyacrylamide gels (e.g. capillary sequencers) Need for standardized protocols with quality controls Some techniques suited for local database comparison General steps Data Pictures, photographs 2D TIFF images Sequence data densitometric curves One dimensional curves (mass spectroscopy) Densiometric curve vs fingerprint Example: TIFF File General steps Data processing Give the computer the basic information define lanes Not all lanes migrate the same normalize tracks (against MW) Define what you are looking for search bands OR Let the computer calculate curves Example: Define lanes Example: normalize tracks Similarity coefficient Definition: Creation of the “best guess” relation between data according to a computer algorithm Band based: (binary data) Dice Jaccard Jeffrey’s Ochiai Pattern/curve based: Pearson correlation Cosine coefficient Example: calculate curves I Example: calculate curves I Pattern vs band matching Band matching is a binary typing method Subjective by nature Suited for less complex fingerprints Data format very suitable for database construction Pattern/curve matching is a densitometric typing method Objective by nature Suited for complex fingerprints Under analysis restrictions suited for database construction Band matching I Band matching II Band matching III Example: search bands (your experiment) Comparison techniques (grouping) Clustering: Pairwise UPGMA WARD Neighbor Joining Nearest neighbor Furthest neighbor K-means partitioning Global optimization maximum parsimony maximum likelyhood Guest Lecture by Bruno Pot Cluster validation Bootstrap analysis Repeated analysis, 100-1000x, gives indication of robustness of the tree Indicates the significance (stability) of the different clusters. Applicable to: character sets, bandmatching & sequences Jackknife & Group isolation techniques Shows the stability of the group Indicates the separation between any set of groups defined by the user Error flags Indicates the uncertainty (based on the standard deviation) of the branch linkage positions ONLY UPGMA Software packages Bionumerics (Applied Maths) Dendron (Solltech) Taxotron (Inst. Pasteur) Quantar Suite (Keygene Int.) Phoretix 1D (Phoretix Int.) RFLP analysis (T-rex) Clustal RAPDistance NJTREE PAUP PHYLIP Freeware Final remarks You may choose a very good software package You may analyse your data in the correct way You may include all possible controls Your result may look perfect It’s always a matter of choices and results may differ Between different typing methods “In silico prediction of band based restriction methods” e.g. AFLP “in silico” points at a theoretical prediction of the results of a band based typing method The procedure is technically carried out by the software More genomes become available Reference strains for technique Controls for performance Predictive value Omitting laborious testing Also applicable to other restriction based techniques like PFGE Step 1 Enter the internet and go to the NCBI site www.ncbi.nlm.nih.gov/ Look for: complete genomes Get the accession numbers and download the sequence to your computer Standard DNA programs or specialised analysis software (e.g. Bionumerics, Applied Maths) Resulting database: e.g. adenovirus Select one sequence (NC_003266) Request restriction enzyme analysis (all annotations are kept) Perform a restriction analysis of your choice (EcoRI: 2 cuts; PstI: 17 cuts; MseI: 57 cuts) Fragment list displayed on the lower part Show ‘synthetic gel’ in Bionumerics Use multiple RE’s simultaneously; paste result(s) in the same text file; write .txt file to disk Calculate dendrogram for the given selection Select coefficient desired Dendrogram / Profile / Information (groupings in color) /similarity Matrix based on Dice Final For AFLP normally between 20-35 fragments are optimal When your results are satisfying, you can start your practical work to verify this When you’re not satisfied you can repeat the digestion with other enzymes or (in the case of AFLP) use other selective nucleotides Verification of “in silico” typing results Check with same strain if In silico AFLP corresponds to practical results In silico AFLP is applicable on genomic sequence data for new typing procedures (e.g. no previous experience with species requested). Cheap, rapid verification method becoming more predictive when more genome sequences are present Very good quality control on your own procedure Only applicable on restriction based typing methods http://insilico.ehu.es/AFLP/ Dice (Tol 1.0%-1.0%) (H>0.0% S>0.0%) [0.0%-100.0%] 100 isAFLP 50 0 isAFLP Type 2; PstI-PstI type C; PstI-PstI type 5; pstI-pstI type 40; EcoRI-Ec. type 5; ecorI-ecorI type F; EcoRI-EcoRI Type 2; EcoRI-MseI type C; MseI-EcoRI type 5; ecoRI-MseI type 12; EcoRI-MseI type A; MseI-EcoRI type 40; PstI-MseI . type F; MseI-PstI type 40; EcoRI-Mse. type F; MseI-EcoRI Type 2; PstI-MseI type 5; pstI-MseI type C; MseI-PstI type E; MseI-PstI type 12; PstI-MseI type A; MseI-PstI Type 2; MseI-MseI type C; MseI-MseI type 5; mseI-mseI type 40; MseI-MseI . type F; MseI-MseI type 12; MseI-MseI type A; MseI-MseI type E; MseI-MseI type 12; PstI-PstI type A; PstI-PstI type E; PstI-PstI type 40; PstI-PstI (. type F; PstI-PstI type E; MseI-EcoRI type 12; EcorI-Eco. Type 2; EcoRI-Eco. type A; EcoRI-Eco. type C; EcoRI-Eco. type E; EcoRI-Eco. SMT 2013 50 Wat gaan jullie praktisch doen Van 6 stammen (Staphyloccen) is na kweek DNA geïsoleerd Kies uit de 6 DNA’s 3 verschillende om te typeren met Agarose AFLP De methode wordt in twee fasen uitgevoerd en is in praktijk geheel identiek aan standaard AFLP met fluorescende primers en capillair analyse Fase1: digestie en ligatie van DNA Hiervoor worden alle ingrediënten bij elkaar gevoegd en bij 37°C geplaatst. Fase 2: de PCR Hiervoor is een kan en klaar mix gemaakt die toegevoegd wordt aan het Restrictie/ligatie mengsel (na verdunning). De PCR vindt overnacht plaats. Morgen gel electroforese (gelen zijn al klaar) Woensdag band based gel analysis Ref:2013 LM-PCR Staphylococcen AFLP 100.00 110.00 120.00 130.00 140.00 150.00 160.00 170.00 180.00 190.00 200.00 210.00 220.00 230.00 240.00 250.00 100 90 80 70 60 50 LM-PCR 40 30 20 LM-PCR . 9349 TY MRSA . AT12135 A . 9436 TY MRSA . AT12135 B . 9351 TY MRSA . AT12137 C . 9636Q TY MRSA . AT12203 D . 8132 TY S. epidermidis . E . 5887 TY S. schleifferi . F De afkapwaarde voor identieke stammen resp. identieke species ligt op 90% en 35% en wordt weergegeven d.m.v. stippellijnen.